Lecture 8

Transportation Problem (TP) and
 Transshipment Problem

By

Dr. Safaa Amin

Dr. Doaa Ezzat

Unbalanced Problems

- If (Total Supply) > (Total Demand),
- then for Excess supply is assumed to go to the inventory and costs nothing for shipping.
- Dummy destination column is added, whose demand equals the difference between the total supply and total demand and zero transportation cost
- If (Total Supply) < (Total Demand),
- a dummy source is created, whose supply equals the difference.
- All unit shipping costs into a dummy destination or out of a dummy source are 0 .

Example 1: Balanced Problem

		DESTINATIONS				
Supply						
		D_{1}	D_{2}	D_{3}	D_{4}	
Sources	S_{1}	50	75	30	45	12
	$\mathrm{~S}_{2}$	65	80	40	60	17
	S_{3}	40	70	50	55	11

Example 2: Unbalanced Problem

	Destination				Supply
	D1	D2	D3	D4	
S1	50	75	35	75	12
S2 S3	65	80	60	65	17
(Dummy	40	70	45	55	11
Min Demand	0	$?$	$?$	$?$	$? ?$
Max Demand	15	10	15	10	

	Destination				Supply
	D1	D2	D3	D4	
S1	50	75	35	75	12
S 2	65	80	60	65	17
S 3	40	70	45	55	11
	0	0	0	0	10
(Dummy)	0	0	0		
Min Demand	0	0	0	15	10
Max Demand	15	10	10		

Total Supply $=40$
Total Max Demand = 50
Add Dummy Source with costs $=0$ to all real Destination and Supply $=50-40=10$

	Destination					Supply
	D1	D2	D3	D4	Dummy	
S1	50	75	35	75	$?$	12
S 2	65	80	60	65	$?$	17
S 3	40	70	45	55	$?$	11
Min Demand	0	0	0	0		
Max Demand	7	13	5	10	$?$	

Total Supply $=40$
Total Max Demand = 35

	Destination					Supply
	D1	D2	D3	D4	Dummy	
S1	50	75	35	75	0	12
	65	80	60	65	0	17
	40	70	45	55	0	11
Min Demand	0	0	0	0		
Max Demand	7	13	5	10	5	

Total Supply $=40$
Total Max Demand = 35
Add Dummy Destination with costs $=0$ from all real SOurces and Demand $=40-35=5$

Example 2: Unbalanced Problem

	Destination				Supply
	D1	D2	D3	D4	
S1	50	75	35	75	12
S2	65	--	60	65	17
S3 (Dummy)	40	70	45	55	11
Min Demand	15	??	$? ?$	$? ?$	$? ?$
Max Demand	15	13	0	10	

Example 2: Unbalanced Problem

	Destination				Supply
	D1	D2	D3	D4	
S1	50	75	35	75	12
S2	65	M	60	65	17
S3	40	70	45	55	11
(Dummy)	??	??	??	??	??
Min Demand	15	5	0	10	= total supply min demand for other Destinatio
Max Demand	15	13	10	$\begin{aligned} & \infty \\ & =2 \end{aligned}$	=40-20

Example 2: Unbalanced Problem

	Destination					Supply	
	D1	D21	D22	D3	D41	D42	
S1	50	75	75	35	20	20	12
S2	65	M	M	60	50	50	17
S3	40	70	70	45	40	40	11
	M	M	$\mathbf{0}$	$\mathbf{0}$	M	$\mathbf{0}$	18
(Dummy)	Min						
Memand	15	5	0	0	10	0	
Max Demand	15	5	8	10	10	10	

Transshipment Problem

special case of Integer Linear Programming

Transshipment Problems

\checkmark A transportation problem allows only shipments that go directly from supply points to demand points.
\checkmark Transshipment problems are transportation problems in which a shipment may move through intermediate nodes (Junction nodes)before reaching a particular destination node.
\checkmark Fortunately, the optimal solution to a transshipment problem can be found by converting it to transportation problems and solved by transportation Algorithm.

The following steps describe how the optimal solution to a transshipment

 problem can be found by solving a transportation problem.Let $s=$ total Number of units in the system $=\max ($ Total Supply,Total Dem)
Step1. If necessary, add a dummy destination or dummy source to balance the problem.
Step2. construct a transportation tableau as follows:
\checkmark A row in the tableau will be needed for each source and junction point.
\checkmark A column will be needed for each destination and junction point
\checkmark Each supply point will have a supply equal to its original supply, and each demand point will have a demand equals to its original demand.
\checkmark each Junction point will have
supply $=$ its original supply $+S$, and demand $=$ its original demand $+S$

Each location in the Figure will be classified as one of the following

cases

```
Let s = total available units in the system = max(Total Supply,Total Demand)
```

1. Pure source: is a point that can send goods to another point but can not receive goods from any other point
from the figure: it is a source has supply and all arrows out from it, or there are arrows in and out, but it is the only source in the system. $\rightarrow \rightarrow$ its supply equals to its original supply
2. Pure Destination: is a point that can receive goods from other points but cannot send goods to any other point.
from the figure it is Destination has Demand and all arrows in, or there are arrows in and out but it is the only Destination in the system. $\rightarrow \rightarrow$ Its demand equals to its original demand

3- Pure Junction (transshipment point): is a point that can both receive goods from other points and send goods to other points
From the figure: it is neither source nor Destination and it has arrows in and out so units can pass through it.
Each Junction point will be considered as source have a supply equals to s and a destination wants demand equals to s.
4- Combined source and junction: if it is a source and it has arrows in and out
it will be modelled as a Source with supply $=$ it's original supply $+s$ and a destination with demand $=s$
5- Combined destination and junction: if it is a destination and it has arrows in and out
it will be modelled as a source with supply $=s$ and destination with demand $=$ its original demand $+S$

$$
\text { Total Supply }=25+15+50=90
$$

Total Demand $=\mathbf{7 0}+\mathbf{2 0}=\mathbf{9 0}$
\rightarrow Balanced Problem

Total Units in the System $=S=90$
Location 1: Pure source with supply=15
Location 2: Pure Dest with Demand $=70$
Source Supply =S
Location 3: source + junction Dest Demand=S
with Supply $=90+25=115$, Dem $=90$
Location 4: Dest + junction $\left\{\begin{array}{l}\text { Source Supply }=90 \\ \text { Dest Demand }=90\end{array}\right.$
with Supply $=90$, Dem $=90+20=110$
Location 5: pure source supply $=50$

	Dest 2	Dest3	Dest4	Supply	Location 1: Pure source with supply=15 Location 2: Pure Dest with Demand $=70$ Location 3: source + junction with Supply $=90+25=115$, Dem $=90$ Location 4: Dest + junction with Supply $=90$, Dem $=90+20=110$ Location 5: pure source with supply $=50$ Location 6: Nothing
Source 1	M	3	2	15	
Source3	4	0	9	115	
Source4	2	M	0	90	
Source5	M	M	5	50	
Demand	70	90	110		
Shipments from a point to itself will cost zero.					

End The
 Operations Research Course

2ل عاه وانتيه طيميهن

$$
\begin{aligned}
& \text { 0.0 }
\end{aligned}
$$

