Lecture 7

Transportation Problem (TP)

special case of Integer Linear Programming

By
Dr. Safaa Amin
Dr. Doaa Ezzat

What is the Transportation Problem?

The transportation problem is a special type of linear programming problem where the objective is to minimize the cost of
distributing a product from a number of sources or origins to a number of destinations.

Transportation Example

We have 3 factories and 3 warehouses
Decision: How much to ship from each origin to each destination? Objective: Minimize transportation cost.

Transportation Cost per Unit			
Factory	$\frac{\text { Dest 1 }}{(300 \text { units) }}$	$\frac{\text { Dest2 }}{(200 \text { units) }}$	$\frac{\text { Dest3 }}{(200 \text { units) })}$
Factory (100 unis)	Rs. 5	Rs. 4	Rs. 3
Factory2 (300 units)	Rs. 8	Rs. 4	Rs. 3
Factory (300 units)	Rs. 9	Rs. 7	Rs. 5

Transportation Example

Factories (Origin)
Warehouses (Destination)

Decision Variables:

$x_{i j}=$ number of units transported from factory " i " to Destination " j "

Objective Function:
Min: $\mathrm{Z}=5 x_{11}+4 x_{12}+3 x_{13}$

$$
\begin{aligned}
& +8 x_{21}+4 x_{22}+3 x_{23} \\
& +9 x_{31}+7 x_{32}+5 x_{33}
\end{aligned}
$$

supply Constraints:

$x_{11}+x_{12}+x_{13} \leq 100$
$x_{21}+x_{22}+x_{23} \leq 300$
$x_{31}+x_{32}+x_{33} \leq 300$
demand Constraints:

$$
\begin{gathered}
x_{11}+x_{21}+x_{31} \geq 300 \\
x_{12}+x_{22}+x_{32} \geq 200 \\
x_{13}+x_{23}+x_{33} \geq 200
\end{gathered}
$$

Transportation Cost per Unit			
$\underline{\text { Factory }}$	Dest1 $(300$ units $)$	Dest2 $(200$ units $)$	$\frac{\text { Dest3 }}{(200 \text { units })}$
Factory1 (100 units)	$x_{11}=?$ $C_{11}=$ Rs. 5	$x_{12}=?$ $C_{12}=$ Rs. 4	$x_{13}=?$ $C_{13}=$ Rs. 3
Factory2 (300 units)	Rs. 8	Rs. 4	Rs. 3
Factory3 (300 units)	Rs. 9	Rs. 7	Rs. 5

The Transportation Algorithm

Unbalanced Problems

- If (Total Supply) > (Total Demand),
- then for Excess supply is assumed to go to the inventory and costs nothing for shipping.
- Dummy destination column is added, whose demand equals the difference between the total supply and total demand and zero transportation cost
- If (Total Supply) < (Total Demand),
- a dummy source is created, whose supply equals the difference.
- All unit shipping costs into a dummy destination or out of a dummy source are 0 .

Example 1: Balanced Problem

		DESTINATIONS				Supply
		D_{1}	D_{2}	D_{3}	D_{4}	
Sources	S_{1}	50	75	30	45	12
	$\mathrm{~S}_{2}$	65	80	40	60	17
	$\mathrm{~S}_{3}$	40	70	50	55	11
Demand		10	10	10	10	

Example 2: Unbalanced Problem

	Destination				Supply
	D1	D2	D3	D4	
S1	50	75	35	75	12
S2	65	80	60	65	17
S3	40	70	45	55	11
(Dummy)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 0}$
Demand	15	10	15	10	

Transportation Tableau:

TABLE 9.15 Format of a transportation simplex tableau

		Destination				Supply	u_{i}
		1	2	...	n		
Source	1	$\begin{array}{l\|l} c_{11} & x_{1} \end{array}$	$\mathrm{C}_{12} \mathrm{x}_{1}$...	$c_{1 n}{ }^{\prime \prime} x_{1}$	s_{1}	
	2	$c_{21}{ }^{\text {x }}$	$c_{22} x_{2}$...	$c_{2 n}$	s_{2}	
	:	:	
	m	$c_{m 1} x_{n}$	$c_{m 2}$...	$c_{m n}$	s_{m}	
Demand	v_{j}	d_{1}	d_{2}	...	d_{n}	$Z=$	

Additional information to be added to each cell:

If $x_{i j}$ is a
basic variable

If $x_{i j}$ is a
nonbasic variable

The Transportation Problem

- Transportation method is more efficient
- Especially for large problems
- For transportation problems with m sources and n destinations:
- Number of basic variables is equal to $m+n-\mathbf{1}$

The Transportation Method

The method involves 3 steps:
1.Obtaining Initial Basic Feasible Solution
a. North-West Corner Rule
b. Vogel's Approximation Method
2.Testing the Optimality
3.Improving the Solution

1- Initial Solution Procedure:

1. Northwest Corner Starting Procedure

1. Select the variable in the upper left (northwest) corner
2. Allocate the minimum of s or d to this variable. If this minimum is s, eliminate all variables in its row from future consideration and reduce the demand in its column by s; if the minimum is d, eliminate all variables in the column from future consideration and reduce the supply in its row by d.

REPEAT THESE STEPS UNTIL ALL SUPPLIES HAVE BEEN ALLOCATED.

Example 1:

Total shipping cost $=2250$

Example 2: Solve the Transportation Table to find Initial Basic Feasible Solution using North-West Corner Method.

Total Cost $=19 * 5+30 * 2+30 * 6+40 * 3+70 * 4+20 * 14$ = Rs. 1015

Limitations of North West Corner Rule

- Although this method is relatively simple, it is not efficient in terms of cost minimizing. Because it takes into account only the available supply and demand requirements in making assignments and takes no account of the transportation cost involved.

The Transportation Method

Broadly the method involves 3 steps:
1.Obtaining Initial Basic Feasible Solution
a. North-West Corner Rule
b. Vogel's Approximation Method
2.Testing the Optimality
3.Improving the Solution

3. Vogel's Approximation Method Starting Procedure

1. For each remaining row and column, determine the difference between the lowest two remaining costs; these are called the row and column penalties.
2. Select the row or column with the largest difference found in step 1 and note the supply remaining for its row, s, and the demand remaining in its column, d .
3. Allocate the minimum of s or d to the variable in the selected row or column with the lowest remaining unit cost. If this minimum is s, eliminate all variables in its row from future consideration and reduce the demand in its column by s; if the minimum is d, eliminate all variables in the column from future consideration and reduce the supply in its row by d.

REPEAT THESE STEPS UNTIL ALL SUPPLIES HAVE BEEN ALLOCATED.

Example 1

Example 1 cont.

Example 1 cont.

Total sipping cost $=2030$ while in NW Total sipping cost $=2250$

Example 2:

2- Min cost

Example 2:

	D1			D3		D4	Supply	Row Diff.
S1	19		50		10		7	9
	5							
S2	70		40		60		9	20
S3	40		70		20		10	20
Demand		5		7		14	34	
Col.Diff.		21		10		10		

Example 2:

Example 2:

Example 2:

Example 2:

	D1		D2		D3		D4		Supply	
S1	19	5	30		50		10		7	
								2		
S2	70		30		40		60		9	
						7		2		
S3	40		8		70		20		18	
				8				10		
Demand				8				14	34	

Example 2:

The total transportation cost obtained by this method $=8 * 8+19 * 5+20^{*} 10+10 * 2+40^{*} 7+60 * 2$ = Rs. 779
while by using Northwest

$$
\begin{aligned}
\text { Total Cost } & =19 * 5+30 * 2+30 * 6+40 * 3+70 * 4+20 * 14 \\
& =\text { Rs. } 1015
\end{aligned}
$$

Here, we can see that Vogel's Approximation Method involves the lowest cost than North-West Corner Method hence is the most preferred method of finding initial basic feasible solution.

The Transportation Method

Broadly the method involves 3 steps:
1.Obtaining Initial Basic Feasible Solution
a. North-West Corner Rule
b. Vogel's Approximation Method
2.Testing the Optimality
3.Improving the Solution

2. Testing the Optimality

Find an initial basic feasible solution by some starting procedure. Then,

1. Set $U_{i}=\mathbf{0}$ or $V_{j}=\mathbf{0}$ the row or column with the largest number of basic variables. Solve for the other U_{i} 's and V_{j} 's by:

$$
C_{i j}=U_{i}+V_{j} \quad \text { for basic variables. }
$$

Then calculate the $\mathrm{C}_{\mathrm{ij}}-\mathrm{Z}_{\mathrm{ij}}$ values for non-basic variables by:

$$
C_{i j}-Z_{i j}=C_{i j}-U_{i}-V_{j}
$$

A Basic Feasible Solution is Optimal if $\boldsymbol{C}_{\boldsymbol{i j}}-\boldsymbol{U}_{\boldsymbol{i}}-\boldsymbol{V}_{\boldsymbol{j}} \geq \mathbf{0}$ for each $(\boldsymbol{i}, \boldsymbol{j})$

- If all $\mathrm{C}_{\mathrm{ij}}-\mathrm{Z}_{\mathrm{ij}}$ values are nonnegative, STOP ; the current solution is optimal.

Else, the current solution is not optimal then,

Improve the solution

1- Choose the non-basic variable with the most negative $C_{i j}-U_{i}-V_{j}$ value as the entering variable
2. Find the cycle that includes the entering variable and some of the BASIC variables.

Cycle Properties:

1- Begin with the Most negative $C_{i j}-U_{i}-V_{j}$ (Entering Variable)
2- All the elements of the loop are basic Variable except the beginning one (E.V.).
3- The number of the elements in the Loop even (min 4 elements)
4- There is no consecutive 3 elements in the same row or the same column.
5- move to left or right or top or bottom but not Diagonal
\rightarrow There is a Unique Loop in each basic feasible Solution

Note:

There must be $m+n-1$ basic variables for the transportation simplex method to work!
=> Add dummy source or dummy destination, if necessary
($\mathbf{m}=\#$ of sources and $\mathbf{n}=\#$ of destinations)

Example 1:

Total sipping cost $=2030$

Example 1:

Step 2: Determine Which Current Basic Variable Reaches 0 First

| | D_{1} | D_{2} | D_{3} | D_{4} | Supply |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 50 | -75 | +30 | 45 | 12 |
| S_{1} | | 2 | 0 | 10 | |
| S_{2} | 65 | +80 | -40 | 60 | 17 |
| | | 7 | 10 | | |
| S_{3} | 40 | 70 | 50 | 55 | 11 |
| | 10 | 1 | | | |
| Demand 10 | 10 | 10 | 10 | | |

Entering Variable
Note: 1. Cycle property
2. X_{12} is the leaving variable

All Recipient + Min Donor
All Donor - Min Donor
Min Donor=2

Donor
10-2

Example 1:

Step 3: Determine the Next Transportation Tableau

	D_{1}	D_{2}	D_{3}	D_{4}	Supply	Ui
S_{1}	$(+)^{50}$	$(+)^{75}$	2^{30}	45 10	12	0
S_{2}	$(+)^{65}$	${ }_{9}^{80}$	8	(+) 60	17	10
S_{3}	40 10	170	$(+)^{50}$	(+) 55	11	0
Deman	d 10	10	10	10		

Total shipping cost $=2020$
Departing Variable
$\{$ Improvement $=2(-5)=10\}$

Entering Variable Recipient
\square
2
Donor

Example 1:

Total shipping cost $=30 * 20+45 * 10+9 * 80+8 * 40+10 * 40+70 * 1$

$$
=2020
$$

Since $C_{i j}-U_{i}-V_{j} \geq \mathbf{0}$, for each $(\boldsymbol{i}, \boldsymbol{j}) \rightarrow$ Optimal Soln

Example 2:

	D1			D2		D3		D4	Supply	ui
S1	19		30		50		10		7	cij-vj=10
		5	(+)			(+)		2		J=
S2	70			E.V	40		60		9	60
		(+)		-1\%		7		2		
S3	40		8		70		20		18	20
		(+)	8			(+)		+0		
Demand		5		8		7		14	34	
vj		9		-12		-20		0		

Loop:

Donor
8
8

Donor

Recipient 10

All Recipient + Min Donor All Donor - Min Donor

Example 2:

All Recipient + Min Donor
All Donor - Min Donor

Example 2:

Entering Variable Departing Variable

	D1			D2		D3			Supply	ui
S1	19		30		50		10		7	0
		5	(+)			(+)		2		
S2	70			E.V	40		60		9	32
		(+)		2		7		(+)		
S3	40		8		70		20		18	10
		(+)		6		(+)		12		
Demand	5		8		7		14		34	
vj		19		-2		8		0		

Example 2:

The total transportation cost before improvement
$=8 * 8+19 * 5+20^{*} 10+10 * 2+40^{*} 7+60 * 2$
= Rs. 779
The total transportation cost after improvement
$=19^{*} 5+10 * 2+30 * 2+40 * 7+8 * 6+20 * 12$
$=$ Rs. 743

