Operations Research

Lecture 1: Introduction

Instructors:
Dr. Safaa Amin
Dr. Doaa Ezzat

2020/2021

- Textbook: Problems in Operations Research, Gupta, $10^{\text {th }}$ edition
- Operations Research, Shaum
- Grade: 20% Quizes and Assignment $+20 \%$ mid-term exam $+60 \%$ final exam
- Emails:
- Safaa.ameen@cis.asu.edu.eg
- Doaaezat@cis.asu.edu.eg
- Office hour: to be specified
- Course materials:

Textbook + PPT/Board + Lecture notes

Introduction

- Operations Research is an Art and Science

Operations Research is the scientific approach to execute decision making, which consists of:

- The art of mathematical modeling of complex situations
- The science of the development of solution techniques used to solve these models

What is Operations Research?

- OR has its early roots in World War II and then in business and industry with the aid of computer
- Application areas of OR include military, industry, business, public sector, healthcare...
- Operational Research as termed in Europe, is an Branch of applied mathematics that uses techniques and statistics to arrive at Optimal solutions to solve complex problems

What is an optimal solution?

- An optimal solution is a feasible solution where the objective function reaches its maximum (or minimum) value - for example, the most profit or the least cost.
- A globally optimal solution is one where there are no other feasible solutions with better objective function values.

INTRODUCTION TO OPERATIONAL RESEARCH

Operational Research: is a systematic and analytical approach to decision making and problem solving.

It is typically concerned with determining the maximum profit, sale, output, crops yield and efficiency
And minimum losses, risks, cost, and time of some objective function.

USE OF COMPUTERS

The models of OR need lot of computation and therefore, the use of computers becomes necessary.

With the use of computers it is possible to handle complex problems requiring large amount of calculations.

The objective of the operations research models is to attempt and to locate Best or Optimal Solution.

NATIONAL PLANNING AND BUDGETING

OR is used for the Preparation of-

- Five Year Plans
- Annual Budgets
- Forecasting of Income and Expenditure
- Scheduling of Major Projects of National Importance
- Population
- Employment and Generation of Agriculture Yields, etc.

1.3 An OR study: the general steps

An OR study usually contains the following steps:

1. Identify the problem;
2. Formulate the problem as a math model;
3. Develop effective algorithms or computer packages to solve the model;
4. Obtain numerical solution for the model;
5. Implementation

Course plan (preliminary)

Introduction
Chapter 1: Linear Programming: modeling and graphical solution;
Chapter 2: Powerful Method, LP: simplex method;
How to be efficient? LP: duality Theory
(Dual Simplex Method- Dual Problem)
Chapter 3: What if?
sensitive analysis;
Chapter 4: Integer Programming
1- epsilon close method 2-Rounding
3- Assigning non-zero value to the non-Basic variable
Chapter 5: Integer program Applications
(Transportation - Production- Transshipment- assignment)

Example: Iron Works.

Iron Factory, manufactures two products made from steel and just received this month's allocation of 2000 pounds of steel. It takes 2 pounds of steel to make a unit of product 1 and it takes 3 pounds of steel to make a unit of product 2.
unit profits for products 1 and 2, are100 and 200 respectively.

The manufacturer has a contract calling for at least 60 units of product 1 this month. The firm's facilities are such that at most 720 units of product 2 may be produced monthly.

Example: Iron Works, Inc.

- Decision Variable: Let x_{1} and x_{2} denote this month's production level of product 1 and product 2, respectively.
- Objective:
- The total monthly profit =
(profit per unit of product 1)
x (monthly production of product 1)
+ (profit per unit of product 2)
x (monthly production of product 2)

$$
=100 x_{1}+200 x_{2}
$$

We want to maximize total monthly profit:

$$
\operatorname{Max}: Z=100 x_{1}+200 x_{2}
$$

Example: Iron Works, Inc.

- Constraints
- The total amount of steel used during monthly production =
(steel required per unit of product 1)
x (monthly production of product 1)
+ (steel required per unit of product 2)
x (monthly production of product 2)

$$
=2 x_{1}+3 x_{2}
$$

This quantity must be less than or equal to the allocated b pounds of steel:

$$
2 x_{1}+3 x_{2} \leq 2000
$$

Example: Iron Works, Inc.

- Mathematical Model (continued)
- The monthly production level of product 1 must be greater than or equal to 60 :

$$
x_{1} \geq 60
$$

- The monthly production level of product 2 must be less than or equal to 720:

$$
x_{2} \leq 720
$$

- However, the production level for product 2 cannot be negative:

$$
x_{1} \text { and } x_{2} \geq 0
$$

Example: Iron Works.

- Answer:

Substituting, the model is:

$$
\begin{array}{rlr}
\text { Max: } \mathrm{Z}=100 x_{1}+200 & x_{2} \\
\text { s.t. } & 2 x_{1}+3 x_{2} & \leq 2000 \\
& x_{1} & \geq 60 \\
& x_{2} & \leq 720 \\
& x_{1 \text { and }} x_{2} & \geq 0
\end{array}
$$

Example: Iron Works, Inc.

- Question:

The optimal solution to the current model is $x_{1}=60$ and $x_{2}=6262 / 3$. If the product were engines, explain why this is not a true optimal solution for the "real-life" problem.

- Answer:

One cannot produce and sell $2 / 3$ of an engine. Thus the problem is further restricted by the fact that both x_{1} and x_{2} must be integers. They could remain fractions if it is assumed these fractions are work in progress to be completed the next month.

Example: Iron Works

Graphical solution

A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.)

1. Plot each constraint as an equation and then decide which side of the line is feasible (if it's an inequality).
2. Find the feasible region.
3. find the coordinates of the corner (extreme) points of the feasible region.
4. Substitute the corner point coordinates in the objective function
5. Choose the optimal solution

Example 2: A Minimization Problem

- LP Formulation

$$
\begin{aligned}
& \text { Min } z=5 x_{1}+2 x_{2} \\
& \text { s.t. } \quad 2 x_{1}+5 x_{2} \geq 10 \\
& 4 x_{1}-x_{2} \geq 12 \\
& x_{1}+x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Example 1: Graphical Solution

- Graph the Constraints

Constraint 1: When $x_{1}=0$, then $x_{2}=2$; when $x_{2}=0$, then $x_{1}=5$. Connect $(5,0)$ and $(0,2)$. The " $>"$ side is above this line.
Constraint 2: When $x_{2}=0$, then $x_{1}=3$. But setting x_{1} to 0 will yield $x_{2}=-12$, which is not on the graph. Thus, to get a second point on this line, set x_{1} to any number larger than 3 and solve for x_{2} : when $x_{1}=5$, then $x_{2}=8$. Connect $(3,0)$ and $(5,8)$. The " $>$ " side is to the right. Constraint 3: When $x_{1}=0$, then $x_{2}=4$; when $x_{2}=0$, then $x_{1}=4$. Connect $(4,0)$ and $(0,4)$. The " $>"$ side is above this line.

Example 1: Graphical Solution

- Constraints Graphed

Example 1: Graphical Solution

- Solve for the Extreme Point at the Intersection of the second and third Constraints

$$
\begin{aligned}
4 x_{1}-x_{2} & =12 \\
x_{1}+x_{2} & =4
\end{aligned}
$$

Adding these two equations gives:

$$
5 x_{1}=16 \text { or } x_{1}=16 / 5 .
$$

Substituting this into $x_{1}+x_{2}=4$ gives: $x_{2}=4 / 5$

- Solve for the extreme point at the intersection of the first and third constraints

$$
\begin{aligned}
& 2 x_{1}+5 x_{2}=10 \\
& x_{1}+x_{2}=4
\end{aligned}
$$

Multiply the second equation by -2 and add to the first equation, gives

$$
3 x_{2}=2 \text { or } x_{2}=2 / 3
$$

Substituting this in the second equation gives $\mathrm{x} 1=10 / 3$

point	Z
$(16 / 5,4 / 5)$	$88 / 5$
$(10 / 3,2 / 3)$	18
$(5,0)$	25

Example 2: A Maximization Problem

$\operatorname{Max} z=5 x_{1}+7 x_{2}$

$$
\begin{aligned}
& \text { s.t. } \\
& x_{1} \leq 6 \\
& 2 x_{1}+3 x_{2} \leq 19 \\
& x_{1}+x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Example 2: A Maxımızation Problem

- Constraint \#1 Graphed

Example 2: A Maxımızation Problem

- Constraint \#2 Graphed

Example 2: A Maxımızation Problem

- Constraint \#3 Graphed

Example 2: A Maxımıation Problem

- Combined-Constraint Graph

Example 2: A Maximization Problem
 \square

- Feasible Solution Region

Example 2: A Maximization Problem

Example 2: A Maximization Problem

- Having identified the feasible region for the problem, we now search for the optimal solution, which will be the point in the feasible region with the largest (in case of maximization or the smallest (in case of minimization) of the objective function.
- To find this optimal solution, we need to evaluate the objective function at each one of the corner points of the feasible region.

Example 2: A Maximization

 Problem- Optimal Solution $\underline{\text { Point } Z}$ x_{2}

Extreme Points and the Optimal Solution

- The corners or vertices of the feasible region are referred to as the extreme points.
- An optimal solution to an LP problem can be found at an extreme point of the feasible region.
- When looking for the optimal solution, you do not have to evaluate all feasible solution points.
- You have to consider only the extreme points of the feasible region.

Feasible Region

- The feasible region for a two-variable linear programming problem can be nonexistent, a single point, a line, a polygon, or an unbounded area.
- Any linear program falls in one of three categories:
- is infeasible
- has a unique optimal solution or alternate optimal solutions
- has an objective function that can be increased without bound

Special Cases

- Alternative Optimal Solutions

In the graphical method, if the objective function line is parallel to a boundary constraint in the direction of optimization, there are alternate optimal solutions, with all points on this line segment being optimal.

- Infeasibility (No Solution)

A linear program which is over constrained so that no point satisfies all the constraints is said to be infeasible.

- Unbounded

For a max (min) problem, an unbounded LP occurs if it is possible to find points in the feasible region with arbitrarily large (small) Z

Example with Multiple Optimal Solutions

Maximize $\quad z=3 x_{1}-x_{2}$
subject to $15 x_{1}-5 x_{2} \leq 30$

$$
10 x_{1}+30 x_{2} \leq 120
$$

$$
x_{1} \geq 0, x_{2} \geq 0
$$

Example: Infeasible Problem

- Solve graphically for the optimal solution:

$$
\begin{array}{ll}
\text { Max } & z=2 x_{1}+6 x_{2} \\
\text { s.t. } & 4 x_{1}+3 x_{2} \leq 12 \\
& 2 x_{1}+x_{2} \geq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Example: Infeasible Problem

- There are no points that satisfy both constraints, hence this problem has no feasible region, and no optimal solution.

Example: Unbounded Problem

- Solve graphically for the optimal solution:

$$
\begin{array}{ll}
\text { Max } & z=3 x_{1}+4 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \geq 5 \\
& 3 x_{1}+x_{2} \geq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Example: Unbounded Problem

- The feasible region is unbounded and the objective function line can be moved parallel to itself without bound so that z can be increased infinitely.

$$
x_{2}
$$

Solve the following LP graphically

$$
\begin{array}{cll|ll}
\max & 45 x_{1}+60 x_{2} & & \mid \longleftarrow & \text { Objective Function } \\
\text { s.t. } & 10 x_{1}+20 x_{2} \leq 1800 & \mathrm{~A} & \leftarrow & \text { Structural } \\
& 28 x_{1}+12 x_{2} \leq 1440 & \mathrm{~B} & \text { constraints } \\
& 6 x_{1}+15 x_{2} \leq 2040 & \mathrm{C} & \\
& 15 x_{1}+10 x_{2} \leq 2400 & \mathrm{D} & & \\
& x_{1} \leq 40 & \mathrm{E} & & \\
& x_{2} \leq 100 \quad \mathrm{~F} & & \\
& x_{1} \geq 0, x_{2} \geq 0 & \mid \longleftarrow & \text { nonnegativity }
\end{array}
$$

Where x_{1} is the quantity produced from product Q, and x_{2} is the quantity of product P

Are the LP
assumptions
valid for this
problem?

The graphical solution

Possible Outcomes of an LP

1. Infeasible - feasible region is empty; e.g., if the constraints include $x_{1}+x_{2} \leq 6$ and $x_{1}+$
$x_{2} \geq 7$
2. Unbounded - Max $15 x_{1}+7 x_{2}$ (no finite optimal s.t. $x_{1}+x_{2} \geq 1$ solution)
$x_{1}, x_{2} \geq 0$
3. Multiple optimal solutions -

$$
\begin{array}{cl}
\max & 3 x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

4. Unique Optimal Solution

Note: multiple optimal solutions occur in many practical (real-world) LPs

