Determinants

The determinant of a square matrix A is denoted by the symbol $|A|$ or $\operatorname{det} A$. We can form determinants of $n \times n$ matrices.

1. If $A=\left[a_{11}\right]$ is a 1×1 matrix, then its determinant $|A|$ is equal to the number a_{11} itself.
2. $|2|=2$
3. If $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is a 2×2 matrix, then the determinant is given by

$$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

2. $\left|\begin{array}{cc}2 & 3 \\ 4 & -5\end{array}\right|=2 \times(-5)-3 \times 4=-10-12=-22$
3. If $\begin{aligned} A & =\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \text { is a } 3 \times 3 \text { matrix, then its determinant is given by } \\ |A| & =a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{32}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|\end{aligned}\left|\begin{array}{ll}- & + \\ + & - \\ + & - \\ +\end{array}\right|$

$$
=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
$$

3. $\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 1 & 3 \\ 3 & -4 & -6\end{array}\right|=1\left|\begin{array}{cc}1 & 3 \\ -4 & -6\end{array}\right|-3\left|\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right|+5\left|\begin{array}{cc}2 & 1 \\ 3 & -4\end{array}\right|$, expanding along the first row

$$
=1(-6+12)-3(-12-9)+5(-8-3)=6+63-55=14
$$

To find the value of a 3×3 determinant, the following rule, called the Sarrus rule may also be useful.

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \quad \begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}
$$

Write the product of the elements of each leading diagonal with positive sign. Also write the product of the elements of each secondary diagonal with negative sign.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 3 & 5 \\
2 & 1 & 3 \\
3 & -4 & -6
\end{array}\right| \\
& \begin{array}{l}
1 \\
1 \times 1 \times(-6)+3 \times 3 \times 3+5 \times 2 \times(-4)-3 \times 1 \times 5-(-4) \times 3 \times 1-(-6) \\
\times 2 \times 3=-6+27-40-15+12+36=75-61=14
\end{array} \\
& 3
\end{aligned}
$$

Finding the determinant using row operations

Row Operations

Let A be a square matrix.
a. If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det} B=\operatorname{det} A$.
b. If two rows of A are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
c. If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \cdot \operatorname{det} A$.

If A is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then

$$
\operatorname{det} \mathrm{EA}=(\operatorname{det} E)(\operatorname{det} A)
$$

where

$$
\operatorname{det} E=\left\{\begin{aligned}
1 & \text { if } E \text { is a row replacement } \\
-1 & \text { if } E \text { is an interchange } \\
r & \text { if } E \text { is a scale by } r
\end{aligned}\right.
$$

Find $\left|\begin{array}{ccc}1 & 3 & 5 \\ 2 & 1 & 3 \\ 3 & -4 & -6\end{array}\right|$ using row operations

Finding the determinant using the cofactors

Definition If $M_{i j}$ is the minor of an element $a_{i j}$ of a determinant, then the cofactor of the element, denoted by $A_{i j}$ is defined as $A_{i j}=(-1)^{i+j} M_{i j}$.
Thus, the minor of a_{11} in D is $M_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$ and the cofactor is
$A_{11}=(-1)^{1+1} M_{11}=M_{11}$.
Definition Let $D=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ be a 3×3 determinant.
Then the 2×2 determinant obtained by deleting the row and column, in which an element $a_{i j}$ lies, is called the minor of the element and is denoted by $M_{i j}$.

Write the cofactors of elements of second row of the determinant

$$
D=\left|\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 3 & 6 \\
2 & -7 & 9
\end{array}\right|
$$

and hence find the value of the determinant.

$$
\begin{aligned}
& A_{21}=(-1)^{2+1}\left|\begin{array}{cc}
2 & 3 \\
-7 & 9
\end{array}\right|=-(18+21)=-39 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
1 & 3 \\
2 & 9
\end{array}\right|=9-6=3 \\
& A_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & 2 \\
2 & -7
\end{array}\right|=-(-7-4)=11
\end{aligned}
$$

So

$$
A_{21}=-39, \quad A_{22}=3, \text { and } A_{23}=11
$$

Now

$$
D=a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}=(-4)(-39)+3(3)+6(11)=231
$$

P1: If any two rows or columns of a determinant are identical, then its value equals zero.

Example

$$
\left|\begin{array}{ccc}
2 & 3 & 1 \\
-3 & 4 & 2 \\
2 & 3 & 1
\end{array}\right|=0 \text { [The first and second rows are identical.] }
$$

P2: If all the elements in any row or column of a determinant are zero, then the value of the determinant is also zero.

Example

$$
\left|\begin{array}{ccc}
1 & -2 & 5 \\
3 & 2 & 4 \\
0 & 0 & 0
\end{array}\right|=0 \text { [The elements of third row are all } 0 \text {.] }
$$

P4: The determinant of a diagonal matrix is equal to the product of the diagonal elements.

Example

$$
\left|\begin{array}{ccc}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 4
\end{array}\right|=2 \times(-3) \times 4=-24
$$

If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.

P5: The determinant of a square matrix equals the determinant of its transpose.

Example

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
3 & -1 & 2 \\
2 & 0 & -3
\end{array}\right|=\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & -1 & 0 \\
3 & 2 & -3
\end{array}\right| \quad \operatorname{det} A^{T}=\operatorname{det} A .
$$

P10: The determinant of a product of two square matrices is equal to the product of their determinants, i.e., $|A B|=|A||B|$.

$$
\text { EXAMPLE } 5 \text { Venify Theorem } 6 \text { for } A=\left[\begin{array}{ll}
6 & 1 \\
3 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right] \text {. }
$$

solution

$$
A B=\left[\begin{array}{ll}
6 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
25 & 20 \\
14 & 13
\end{array}\right]
$$

and

$$
\operatorname{det} A B=25 \cdot 13-20 \cdot 14=325-280=45
$$

Since $\operatorname{det} A=9$ and $\operatorname{det} B=5$,

$$
(\operatorname{det} A)(\operatorname{det} B)=9 \cdot 5=45=\operatorname{det} A B
$$

If any element of a row (or column) is the sum of two numbers then the determinant could be considered as the sum of other two determinants as follows

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+d_{1} & b_{2}+d_{2} & b_{3}+d_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|+\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
d_{1} & d_{2} & d_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Inverse of the matrix

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$
C A=I \quad \text { and } \quad A C=I
$$

where $I=I_{n}$, the $n \times n$ identity matrix. In this case, C is an inverse of A. In fact, C is uniquely determined by A, because if B were another inverse of A, then $B=B I=$ $B(A C)=(B A) C=I C=C$. This unique inverse is denoted by A^{-1}, so that

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I
$$

A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Formula The inverse of a nonsingular matrix A is given by the formula:

$$
A^{-1}=\frac{1}{A}(\operatorname{Adj} \cdot A)
$$

Note that no inverse of A exists, when $|A|=0$.

Example
 Find the inverse of the matrix
 $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$

Solution

Let $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$. Then the determinant of A is $|A|=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right|=$ $0(2-3)-1(1-9)+2(1-6)=-2$. Since $|A| \neq 0 . \therefore A^{-1}$ exists. Now, the cofactors of the elements of A are

$$
\begin{aligned}
& A_{11}=\left|\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right|=-1, \quad A_{12}=-\left|\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right|=8 \\
& A_{13}=\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right|=-5, \quad A_{21}=-\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|=1 \\
& A_{22}=\left|\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right|=-6, \quad A_{23}=-\left|\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right|=-3 \\
& \begin{array}{l}
A_{31}=\left|\begin{array}{ll}
1 & 2 \\
2 & 3 \\
0 & 1 \\
1 & 2
\end{array}\right|=-1, \quad A_{32}=-\left|\begin{array}{ll}
0 & 2 \\
1 & 3
\end{array}\right|=2 \\
A_{33}=-1
\end{array}
\end{aligned}
$$

\therefore The matrix of cofactors is $\left[\begin{array}{ccc}-1 & 8 & 5 \\ 1 & -6 & 3 \\ 1 & 3 & -1\end{array}\right]$, hence

$$
\operatorname{Adj}(A)=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1
\end{array}\right]
$$

Now

$$
A^{-1}=\frac{1}{|A|} \operatorname{Adj}(A)=\frac{1}{(-2)}\left[\begin{array}{ccc}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
-4 & 3 & -1 \\
5 / 2 & -3 / 2 & -1
\end{array}\right]
$$

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.
Row reduce the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. If A is row equivalent to I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$. Otherwise, A does not have an inverse.

EXAMPLE 7 Find the inverse of the matrix $A=\left[\begin{array}{rrr}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

SOLUTION

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & I
\end{array}\right]=\left[\begin{array}{rrrrrr}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -4 & 0 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & -4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

Theorem 7 shows, since $A \sim I$, that A is invertible, and

$$
A^{-1}=\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]
$$

It is a good idea to check the final answer:

$$
A A^{-1}=\left[\begin{array}{rrr}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It is not necessary to check that $A^{-1} A=I$ since A is invertible.
a. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

b. If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is the product of the inverses of A and B in the reverse order. That is,

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

c. If A is an invertible matrix, then so is A^{T}, and the inverse of A^{T} is the transpose of A^{-1}. That is,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Find the inverse of the matrix $A=\left[\begin{array}{rrr}1 & -2 & -1 \\ -1 & 5 & 6 \\ 5 & -4 & 5\end{array}\right]$, if it exists.

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I
\end{array}\right] } & \sim\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
-1 & 5 & 6 & 0 & 1 & 0 \\
5 & -4 & 5 & 0 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 1 & 1 & 0 \\
0 & 6 & 10 & -5 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 1 & 1 & 0 \\
0 & 0 & 0 & -7 & -2 & 1
\end{array}\right]
\end{aligned}
$$

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A x=0$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The equation $A \mathbf{x}=\mathbf{b}$ has the umique solution $\mathbf{x}=A^{-1} \mathbf{b}$.
g. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
h. The columns of A span \mathbb{R}^{n}.
i. The $\operatorname{det} A \neq 0$.
j. There is an $n \times n$ matrix C such that $C A=I$.
k. There is an $n \times n$ matrix D such that $A D=I$.

1. A^{T} is an invertible matrix.
