Section 3
 solution set
 vector and matrix equations
 linear combinations, span
 and linear independent

$>$ Solution set and parametric vector form

EXAMPLE 3 Describe all solutions of $A \mathbf{x}=\mathbf{b}$, where

$$
\begin{aligned}
& \underset{A}{A}=\left[\begin{array}{rrr}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{r}
7 \\
-1 \\
-4
\end{array}\right] \quad\left(00 \ldots b_{b+0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 3 x_{2}=6 \quad \therefore x_{2}=2,3 x_{1}+5 x_{2}^{2}-4 x_{3}=7, \quad 3 x_{1}=4 x_{3}-3 \quad \therefore x_{1}=\frac{4}{3} x_{3}-1 ; x_{3} \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=t \\
& \begin{array}{l}
x_{2}=2 \quad ; \quad t \in R \\
x_{1}=\frac{4}{3} t-1
\end{array}
\end{aligned}
$$

> Homogeneous system

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial solution. Then describe the solution set.

$$
\left.\begin{array}{rl}
3 x_{1}+5 x_{2}-4 x_{3} & =0 \\
-3 x_{1}-2 x_{2}+4 x_{3} & =0 \\
6 x_{1}+x_{2}-8 x_{3} & =0
\end{array}\right) \quad\binom{i}{0 i_{\neq 0}} \quad b=0
$$

SOLUTION Let A be the matrix of coefficients of the system and row reduce the augmented matrix [$\left.\begin{array}{cc}A & 0\end{array}\right]$ to echelon form:

Solve for the basic variables x_{1} and x_{2} and obtain $x_{1}=\frac{4}{3} x_{3}, x_{2}=0$, with x_{3} free. As a vector, the general solution of $A x=0$ has the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
\frac{4}{3} \\
0 \\
1
\end{array}\right]=x_{3} \mathbf{v}, \ldots p \text { where } \mathbf{v}=\left[\begin{array}{c}
\frac{4}{3} \\
0 \\
1
\end{array}\right]
$$

Slide 4

If every column of an augmented matrix contains a pivot,
then the corresponding system is inconsistent $\left(\begin{array}{llll}\downarrow & b_{1} & & b \\ a_{1} & a_{2} & a_{n} & b \\ 0 & \cdots & 0 & b_{+0}\end{array}\right)$

Whenever a system has free variables, the solution set contains many solutions. x
augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ has a pivot position in every row, the corresponding system may or may not be consistent. -

If the coefficient matrix A has a pivot position in every row, then the corresponding system is consistent. -

Slide 5

> Matrix equation

$$
\begin{align*}
x_{1}+2 x_{2}-x_{3} & =4 \\
-5 x_{2}+3 x_{3} & =1 \tag{1}
\end{align*}
$$

$$
A=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & 2 & -1 \\
0 & -5 & 3
\end{array}\right)_{2 \times 3}, \quad b=\binom{4}{1}_{2 \times 1}
$$

is equivalent to

$$
\begin{align*}
A & =b \\
{\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & -5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
4 \\
1
\end{array}\right] \tag{3}
\end{align*}
$$

$$
\underline{A x}=\underline{b}
$$

> Vector equation

$$
\begin{align*}
x_{1}+2 x_{2}-x_{3} & =4 \tag{1}\\
-5 x_{2}+3 x_{3} & =1
\end{align*}
$$

is equivalent to

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{b} is in \mathbb{R}^{m}, the matrix equation

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{4}
\end{equation*}
$$

has the same solution set as the vector equation

$$
\begin{equation*}
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b} \tag{5}
\end{equation*}
$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{llll:l}
x_{1} & x_{2} & & x_{n} & \mathbf{x}_{1} \tag{6}\\
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

> Linear combination

Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n} and given sealars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined by

$$
\underline{\mathbf{y}}=c_{-} \mathbf{v}_{1}+\cdots+c_{-} \mathbf{v}_{p} \quad V \cdot \varepsilon q
$$

is called a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with weights c_{1}, \ldots, c_{p}. Propeti)

$$
\begin{aligned}
& R_{0} G B \\
& \underset{\substack{0 \\
i \\
255}}{V_{1} G B} \quad\left(v_{2} \quad \cdots \quad v_{p} \mid y\right) \text { Consistent y lin.com. } \\
& \text { inconsistant y not in. con }
\end{aligned}
$$

Slide 8

\mathbf{b} can be generated (or written) as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}. That is, determine whether weights \underline{x}_{1} and x_{2} exist such that

$$
\begin{equation*}
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b} \tag{1}
\end{equation*}
$$

If vector equation (1) has a solution, find it.

$$
\begin{align*}
x_{1}+2 x_{2}= & 7 \\
-2 x_{1}+5 x_{2}= & 4 \tag{3}\\
-5 x_{1}+6 x_{2}= & -3
\end{align*}
$$

To solve this system, row reduce the augmented matrix of the system as follows: ${ }^{3}$

$$
\left[\begin{array}{rrr}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-5 & 6 & -3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 7 \\
0 & 9 & 18 \\
0 & 16 & 32
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 7 \\
0 & 1 & 2 \\
0 & 16 & 32
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

The solution of (3) is $x_{1}=3$ and $x_{2}=2$. Hence \mathbf{b} is a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}, with weights $x_{1}=3$ and $x_{2}=2$. That is,

$$
\text { (3) } \underset{a_{1}}{\left[\begin{array}{r}
1 \\
-2 \\
-5
\end{array}\right]}+\underset{a_{2}}{\left[\begin{array}{l}
2 \\
6 \\
6
\end{array}\right]}=\underset{b}{2}\left[\begin{array}{r}
7 \\
4 \\
-3
\end{array}\right]
$$

Slide 9

$>$ span

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$. That is, Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

with c_{1}, \ldots, c_{p} scalars.

$$
\begin{aligned}
& y \in \operatorname{spam}\left\{v_{1}, v_{2}, \cdots, v_{0}\right\} \\
& y_{\text {in Thespian } 2} 3 \quad\left(v_{1} v_{2} \ldots v_{2}!y\right)
\end{aligned}
$$

EXAMPLE 6 Let $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{r}5 \\ -13 \\ -3\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}-3 \\ 8 \\ 1\end{array}\right] . \quad$ Then
$\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ is a plane through the origin in \mathbb{R}^{3}. Is \mathbf{b} in that plane?

SOLUTION Does the equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b}$ have a solution? To answer this, row reduce the augmented matrix $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}\end{array}\right]$:

$$
\left[\begin{array}{rrr}
1 & 5 & -3 \\
-2 & -13 & 8 \\
3 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 5 & -3 \\
0 & -3 & 2 \\
0 & -18 & 10
\end{array}\right] \sim\left[\begin{array}{rr:r}
1 & 5 & -3 \\
0 & -3) & 2 \\
0 & 0 & -2)
\end{array}\right]
$$

The third equation is $0=-2$, which shows that the system has no solution. The vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b}$ has no solution, and so \mathbf{b} is not in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

Asking whether a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ amounts to asking whether the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}
$$

has a solution, or, equivalently, asking whether the linear system with augmented matrix $\left[\begin{array}{llll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{p} & \mathbf{b}\end{array}\right]$ has a solution.

In the next theorem, the sentence "The columns of $A \operatorname{span} \mathbb{R}^{m "}$ means that every \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A. In general, a set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{m} spans (or generates) \mathbb{R}^{m} if every vector in \mathbb{R}^{m} is a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$-that is, if $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\mathbb{R}^{m}$.

$$
\vec{\rightarrow} \text { A }
$$

Slide 12

Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}1 \\ 0 \\ 0 \\ -1\end{array}\right] . \quad$ Does
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{4} ? Why or why not?
$v_{1}, v_{2},-, v_{p} \in \mathbb{R}^{m}$

Let $\mathbf{v}_{1}=\left[\begin{array}{r}0 \\ 0 \\ -3\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -3 \\ 9\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}4 \\ -2 \\ -6\end{array}\right] . \quad$ Does
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{3} ? Why or why not?

$$
\left(\begin{array}{ccc}
-0 & 0 & 4 \\
0 & -3 & -2 \\
-3 & 4 & -6
\end{array}\right) \quad \begin{array}{ccc}
-\left(\begin{array}{ccc}
-3 & 9 & -6 \\
0 & -3 & -2 \\
0 & 0 & 4
\end{array}\right) \underbrace{b}_{\neq 0}=4
\end{array}
$$

EXAMPLE 3 Let $A=\left[\begin{array}{rrr}1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Is the equation $A \mathbf{x}=\mathbf{b}$ consistent for all possible b_{1}, b_{2}, b_{3} ? \mathbb{R}^{3} sponby col(s) of A ?,$~ 义 n_{0}$
SOLUTION Row reduce the augmented matrix for $A \mathbf{x}=\mathbf{b}$:

$$
\begin{aligned}
& {\left[\begin{array}{rrr:r}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right] \sim\left[\begin{array}{rrr:c}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & b_{2}+4 b_{1} \\
0 & 7 & 5 & b_{3}+3 b_{1}
\end{array}\right]} \\
& \sim\left[\begin{array}{ccc:c}
(1) & 3 & 4 & b_{1} \\
0 & (14) & 10 & b_{2}+4 b_{1} \\
\hdashline(0 & 0 & 0 & b_{3}+3 b_{1}-\frac{1}{2}\left(b_{2}+4 b_{1}\right) \\
& & =0
\end{array}\right]
\end{aligned}
$$

The third entry in column 4 equals $b_{1}-\frac{1}{2} b_{2}+b_{3}$. The equation $A \mathbf{x}=\mathbf{b}$ is not consistent for every \mathbf{b} because some choices of \mathbf{b} can make $b_{1}-\frac{1}{2} b_{2}+b_{3}$ nonzero.

$$
b_{1}-\frac{1}{2} b_{2}+b_{3}=0
$$

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
a. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
b. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
c. The columns of $A \operatorname{span} \mathbb{R}^{m}$.
d. Ahas a pivot position in every row.

For what value(s) of h will \mathbf{y} be in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ if

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{r}
-4 \\
3 \\
h
\end{array}\right] \in \operatorname{spm}
$$

The vector \mathbf{y} belongs to $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ if and only if there exist scalars x_{1}, x_{2}, x_{3}

$$
\begin{aligned}
& \text { such that } \\
& \qquad x_{1}\left[\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right]+x_{2}\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-4 \\
3 \\
h
\end{array}\right] \leftarrow \\
& {\left[\begin{array}{rrrr}
1 & 5 & -3 & -4 \\
-1 & -4 & 1 & 3 \\
-2 & -7 & 0 & h
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 3 & -6 & h-8
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 5 & -3 & -4 \\
0 & 1 & -2 & -1 \\
0 & 0 & (0) & h-5
\end{array}\right] \& \varnothing} \\
& h-5=0
\end{aligned}
$$

$>$ Linear independent

An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
\underline{x}_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\underset{\mathbf{0}}{\mathbf{0}}
$$

has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\left(v_{1} v_{2}-\right. & \left.v_{p}\right)\left(\frac{6}{8}\right) \\
& \stackrel{0}{0} \nu_{1}+\stackrel{0}{x_{2}} v_{2}+\stackrel{0}{x_{3}} v_{3}=0 \quad, \quad x_{1}=x_{2}=x_{3}=0 \\
= & \left(\begin{array}{llll}
\stackrel{\downarrow}{l} \\
v_{1} & v_{2} & \stackrel{\iota}{3}
\end{array}\right) \quad \text { lin. ind. }
\end{aligned}
$$

The columns of a matrix A are linearly independent if and only if the equation $A \mathbf{x}=0$ has only the trivial solution.

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable. (triviol sol. \rightarrow all var. are Basic)
EXAMPLE 1 Let $\mathbf{v}_{\|}={ }_{4}^{2}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
a. Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
b. If possible, find a linear dependence relation among $\mathbf{v}_{1}, \mathbf{v}_{2}$, and $\mathbf{v}_{3} . x_{3}$

$$
\begin{aligned}
& -\left[\begin{array}{ccccc}
(D & 4 & 2 & 0 \\
2^{0} & 5 & 1 & 0 \\
3 & 6 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
r_{2} \rightarrow r_{2}-2 r_{1} \\
r_{3} \rightarrow r_{3}-3 r_{1}
\end{array}\left(\begin{array}{cccc}
1 & 4 & 2 & 0 \\
0 & -3 & -3 & 0 \\
0 & -6 & -6 & 6
\end{array}\right) r_{3} \rightarrow r_{3}+2 r_{2}\left(\begin{array}{cccc}
1 & 4 & 20 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 2 \\
0 & -3 \\
0 & 0 & 0 \\
-3 & 0 \\
0
\end{array}\right] \\
& -3 x_{2}-3 x_{3}=0 \quad \because x_{2}=-x_{3} \quad, x_{1}+4 x_{2}+2 x_{3}=0, \therefore x_{1}=2 x_{3} \\
& \begin{array}{r}
x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=0 \\
6
\end{array} \quad 2 x_{3} v_{1}+x_{3} v_{2}+x_{3} v_{3}=0 \quad \rightarrow x_{3}\left(2 v_{1}-v_{2}+v_{3}\right)=0 \\
& \therefore 2 V_{1}-V_{2}+V_{3}=0 \quad \therefore \quad V_{2}=2 V_{1}+v_{3}
\end{aligned}
$$

EXAMPLE 2 Determine if the columns of the matrix $A=\left[\begin{array}{rrr}0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0\end{array}\right]$ are
linearly independent.
SOLUTION To study $A \mathbf{x}=0$, row reduce the augmented matrix:

$$
\left[\begin{array}{rrr:l}
0 & 1 & 4 & 0 \\
1 & 2 & -1 & 0 \\
5 & 8 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -1 & 0 \\
0 & 1 & 4 & 0 \\
0 & -2 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
(1) & 2 & -1 & 0 \\
0 & (1) & 4 & 0 \\
0 & 0 & (13) & 0
\end{array}\right]
$$

At this point, it is clear that there are three basic variables and no free variables. So the equation $A \mathbf{x}=0$ has only the trivial solution, and the columns of A are linearly independent.

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.

If a set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} contains the zero vector, then the set is linearly dependent.

EXAMPLE 6 Determine by in pection if the given set is linearly dependent.
a. $\left[\begin{array}{l}1 \\ 7 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 9\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{l}4 \\ 1 \\ 8\end{array}\right]$
(in .dep
b. $\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 8\end{array}\right]$
c. ${ }^{-3}\left[\begin{array}{r}-2 \\ 4 \\ 6 \\ 10\end{array}\right],\left[\begin{array}{r}3 \\ -6 \\ -9 \\ 15\end{array}\right]$

