Section 2
 Solving system of linear equations

A linear equation in the variables x_{1}, \ldots, x_{n} is an equation that can be written in the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=\underline{b} \underset{\sim}{c} \tag{1}
\end{equation*}
$$

where b and the coefficients a_{1}, \ldots, a_{n} are real or complex numbers, usually known in advance. The subscript n may be any positive integer. In textbook examples and

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables $-s a y, x_{1}, \ldots, x_{n}$. An example is

A solution of the system is a list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of numbers that makes each equation a true statement when the values s_{1}, \ldots, s_{n} are substituted for x_{1}, \ldots, x_{n}, respectively. Fer

The set of all possible solutions is called the solution set of the linear system. Two linear systems are called equivalent if they have the same solution set. Thatiseach

A system of linear equations has

1. no solution, or
2. exactly one solution, or
3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or infinitely many solutions; a system is inconsistent if it has no solution.

Solve the following system

$$
\begin{aligned}
& \left(\begin{array}{rrr}
\rightarrow\left(x_{1}\right)-2 x_{2}+x_{3}= & 0 \\
2 x_{2}-8 x_{3}= & 8 \\
\rightarrow \\
\rightarrow
\end{array}\right) \begin{array}{r}
r_{1} \\
r_{2} \\
r_{1} \\
r_{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\frac{1}{2} r_{2}\left\{\begin{array}{l}
x_{1}-2 x_{2}+x_{3}=0 \\
=x_{1}+1^{3} x_{2}-12 x_{3}=x^{12} \\
0 x_{1}-3 x_{2}+13 x_{3} \\
0
\end{array}\right)-9}{0_{0}} \\
& \left.\begin{array}{l}
(x 1)-2 x_{2}+x_{3}=0 \\
10 x_{1}+1 x_{2}-4 x_{3}=4 \\
\downarrow 0 x_{1}+0 x_{2}+1 x_{3}=3
\end{array}\right) \xrightarrow{x_{1}-2 x_{2}+x_{3}=0 \quad \therefore x_{1}-4 x_{3}} \begin{array}{l}
x_{2}^{3}-12=4 \\
x_{3}=3
\end{array}
\end{aligned}
$$

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another row. ${ }^{2} \quad r_{i_{\text {row }}} \rightarrow r_{i_{\text {old }}}+c * r_{j}$
2. (Interchange) Interchange two rows. $r_{i} \leftrightarrows r_{j}$
3. (Scaling) Multiply all entries in a row by a nonzero constant. $C * r_{i}$

A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

1. All nonzero rows are above any rows of all zeros. 0.0 .0 zero r ow
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it. $\downarrow(\underset{C \rightarrow 0}{(9)}(\pm) \ldots) \downarrow$
3. All entries in a column below a leading entry are zeros. in reduced echelon form (or reduced row echelon form):
4. The leading entry in each nonzero row is (1)
5. Each leading 1 is the only nonzero entry in its column.

Uniqueness of the Reduced Echelon Form
Each matrix is row equivalent to one and only one reduced echelon matrix.
A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.
valucif $\left[\begin{array}{cccccccc}0 & (1)^{\mp \nu} & * & 0 \\ 0 & 0 & 0 & (1)^{\mp}(0) & 0 & * & * & 0 \\ 0 & 0 & 0 & 0^{2} & (1) & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \\ * 0\end{array}\right]$

$$
\left.\begin{array}{rl}
x_{1}-2 x_{2}+x_{3} & =0 \\
\rightarrow 0 & 2 x_{2}-8 x_{3} \\
-4 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =\left(\begin{array}{l}
0 \\
8 \\
-9
\end{array} \rightarrow\right.
\end{array} \underset{\text { coefficient matrix }}{A-} \begin{array}{rrr}
x_{1} & x_{2} & x_{3} \\
1 & -2 & 1 \\
0 & 2 & -8 \\
-4 & 5 & 9
\end{array}\right] \quad b=x_{n} \quad\left[\begin{array}{r}
0 \\
8 \\
-9
\end{array}\right]
$$

The augmented matrix is

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Examples:

$$
O=2^{\text {coinntann }} \rightarrow(A ; b)
$$

Determine if the following system is consistent: $\quad\left[\begin{array}{lll:l}0 & \cdots & 0 & b\end{array}\right]$ with b nonzero in consistent
$h a s$ nosol.

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}+2 x_{3}=1 \\
& 5 x_{1}-8 x_{2}+7 x_{3}=1
\end{aligned}
$$

- Let $\begin{aligned} 2 x_{1}-x_{2} & =h \\ -6 x_{1}+3 x_{2} & =k\end{aligned}$ find the values of h and k such that The system:
a. has no solution.

10-016x

b. has ore solution.
c. has many solution.
'al lear. bo sic.
Themis arofere var.
Free var

a. $k+3 h \neq 0$

- Find the solution of system of linear equations corresponding to the following augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { pivor } \\
\text { position }
\end{array}\left[\begin{array}{cccc}
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & x_{3} & \downarrow
\end{array}\right] \rightarrow \begin{array}{l}
-5 x_{4}=0 \\
\therefore x_{4}=0
\end{array} \quad \therefore x_{2}=-2 x_{3}-3 \\
& X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
3 x_{3}+5 \\
-2 x_{3}-3 \\
x_{3} \\
0
\end{array}\right)
\end{aligned}
$$

