
COMPUTER ARCHITECTURE
LAB4

PACKAGE AND COMPONENT

FCIS Ainshams University

Spring2021

AGENDA

• Component Mapping Example (hands-on):

Micro-operations: register load/ reset

• Package and Components

• Assignment: MIPS Package

2

COMPONENT MAPPING EXAMPLE

Using “FLOP REGISTER” module, implement the
following micro-operations

C: R1  0

L: R2  R1

How to solve this problem?

DESIGN STEPS…

To design any H/W module:

1. Define the components that will perform the
required functionality

 Ex: Mux’s, Dec’s, Reg’s…etc.

2. Connect them together

3. Define suitable control signals to perform the
required functionality

 Ex: selections of Mux’s, Loads of Reg’s…etc.

Converting the draw to VHDL code becomes a
one-to-one mapping

SOLUTION

C: R1  0

L: R2  R1

1. Required components:

 2 registers

2. Connections:

R1 output connected to R2 input (R2  R1)

3. Control signals:

When C = 1: RSTR1 = ‘1’ RSTR1 = C

When L = 1: RSTR2 = ‘0’ RSTR2 = not(L)

FLOP REGISTER

6

flopr

d

n bits

clk

reset

q

n bits

SOLUTION

Then, the circuit that implements those micro-operations will
look like the below

flopr (R1)

flopr (R2)

clk

clk

clk

R2
RST

C

L

R1
RST

WAIT

• How can we use the previous implementation of the FLOP
REGISTER?!

• We need some kind of reusability for our previous codes

• We need some kind of modularity for our previous codes
(registers multiplexers decoders …etc)

• Does VHDL support these needs ?

COMPONENT

• Declaring a code as a COMPONENT, provides a way
of code partitioning and reusability.

• A COMPONENT is simply a piece of conventional
code that contains (LIBRARY declarations, ENTITY
and ARCHITECTURE)

DECLARING COMPONENT

• We can declare the component every time we use it.

• Or, we declare it once in a package and declare
(include) this package in our code

DECLARING COMPONENT

Declare them in the main code itself

DECLARING COMPONENT

• Otherwise, declare them in a PACKAGE

• This avoids repetition of its declaration every time
the COMPONENT is instantiated.

FLOP REGISTER(AS AN ENTITY)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity flopr is

generic (n : NATURAL := 32);
port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(n-1 downto 0);
q: out STD_LOGIC_VECTOR(n-1 downto 0));

end Flopr;
architecture Behavioral of Flopr is
begin

process(clk, reset)
begin

if reset='1' then q <= (others => '0');
Elsif rising_edge(clk) then
q <= d;
end if;

end process;

end Behavioral;

FLOP REGISTER(AS A COMPONENT)

--MyPackage.vhd file

--Define flopr Component (TYPICAL as flopr Entity)

PACKAGE MyPackage is
Component flopr is

generic (n : NATURAL := 32);
port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR(n-1 downto 0);
q: out STD_LOGIC_VECTOR(n-1 downto 0));

end Component;
end Behavioral;

MAIN MODULE (USES REGISTER)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.MyPackage.all;

entity FloprMainModule is
generic (n : NATURAL := 32);

Port (CLk : in STD_LOGIC;
C : in STD_LOGIC;
L : in STD_LOGIC;
R1 : out STD_LOGIC_VECTOR (n-1 downto 0);
R2 : out STD_LOGIC_VECTOR (n-1 downto 0));

end FloprMainModule;

architecture Behavioral of FloprMainModule is
SIGNAL Tmp1: STD_LOGIC_VECTOR (n-1 DOWNTO 0);
SIGNAL Tmp2: STD_LOGIC_VECTOR (n-1 DOWNTO 0);
Begin

Tmp1 <= (others => '1');
R1Map: flopr GENERIC MAP (n) PORT MAP (clk,C,Tmp1,Tmp2);
R2Map: flopr GENERIC MAP (n) PORT MAP (clk,not(L),Tmp2,R2);
R1<= Tmp2 ;

end Behavioral;

VHDL STEPS

To implement this example in Xilinx, you need to:

• Add the VHDL file of Register (flopr) to the project

• Add a package file to declare a component for it
(MyPackage.vhd)

• Write the MainModule that describes the circuit
using register component (MainModule.vhd)

ADDING A PACKAGE

FINAL PROJECT CONTENT

RTL DESIGN OF MAIN MODULE

TEST BENCH

wait for clk_period/2 - 100ns;

l <= ‘1’;

wait for clk_period;

c <= ‘1’;

wait for clk_period*3;

c <= ‘0’;

l <= ‘1’;

wait;
20

ASSIGNMENT: MIPS PACKAGE

• Update “MyPackage” to be used while building the MIPS
processor:

Create a component for each module implemented so far:

 flopr (already added)

 mux2

 Sl2

 Signext

 Alu

 Adder

component flopr generic(n: integer);

port(clk, reset: in STD_LOGIC;

d: in STD_LOGIC_VECTOR(n-1 downto 0);

q: out STD_LOGIC_VECTOR(n-1 downto 0));

end component;

component mux2 generic(n: integer);

port(d0, d1: in STD_LOGIC_VECTOR(n-1 downto 0);

s: in STD_LOGIC;

y: out STD_LOGIC_VECTOR(n-1 downto 0));

end component;

component sl2

port(a: in STD_LOGIC_VECTOR(31 downto 0);

y: out STD_LOGIC_VECTOR(31 downto 0));

end component;

ASSIGNMENT: MIPS PACKAGE

component signext

port(a: in STD_LOGIC_VECTOR(15 downto 0);

y: out STD_LOGIC_VECTOR(31 downto 0));

end component;

component adder

port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

y: out STD_LOGIC_VECTOR(31 downto 0));

end component;

component alu

port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

alucontrol: in STD_LOGIC_VECTOR(2 downto 0);

result: buffer STD_LOGIC_VECTOR(31 downto 0);

zero: out STD_LOGIC);

end component;

ASSIGNMENT: MIPS PACKAGE

UPCOMING LABS

You must bring your package file in addition to the all
.vhd files that have been implemented so far:

 Adder

 Sl2

 Signext

 flopr

 mux2

 Alu

Thanks

25

