N\ N\ N\ N\ N\ \
ZaN\YZA\YZA\Y/ANY/A\Y/
VWZNZ7NZ7\N7\NF\
ZaN\YZANYZANYZANY/A\V/
NN\

FJANVIANVIANVIANVIANYYS

COMPUTER ARCHITECTURE
LAB3

Spring2021

AGENDA

Sequential code
Process

If statement

Hands-on 1: D -FF

Hands-on 2: Generic Building Block of MIPS: n-bit
Flop register

JK- FF

SEQUENTIAL CODE

As the VHDL statements are inherently concurrent,

then sequential circuits can not be implemented
directly.

It must be enclosed in sequential block which
guarantees sequential execution .

SEQUENTIAL CODE

PROCESSES, FUNCTIONS, and PROCEDURES
are the only sections of code that are executed
sequentially.

Any of these blocks is still concurrent with any other
statements placed outside it.

There are statements that allowed only inside
sequential code like IF and CASE statements.

PROCESS

A PROCESS is executed every time a signal in the
sensitivity list changes

ARCHITECTURE myarch OF myentity IS
BEGIN

PROCESS (sensitivity list)
BEGIN

(sequential code)
END PROCESS;

END myarch;

PROCESS

To construct a synchronous circuit, monitoring a signal Is
necessary (for example clk)

A common way of detecting a signal change is by means of
the EVENT attribute

IF (cCIkkEVENT AND clk='1")... -- EVENT attribute

IF (NOT clk'STABLE AND clk="1")...-- STABLE attripute

THE IF STATEMENT

IF/ELSE
Creates priority-encoded logic.

ARCHITECTURE myarch OF myentity IS

BEGIN
PROCESS (clk, rst)

BEGIN
IF (rst = “1’) THEN

ELSIF (clKEVENT AND clk = ‘1’) THEN
ELSE
END IF;
END PROCESS;
END myarch;

D'FL I PFLOP (WITH ASYNCHRONOUS RESET)

Check the usage of if statement and PROCESS to
write D Flip Flop

RST D Clk Q

d— —
DFF X X 0
clk—> 0 1 Trig (1
I} 0 0 Trig |0

HANDS'ON 1 D'FF(WITH ASYNCHRONOUS RESET)

ENTITY DFF IS

PORT (clk: IN STD_LOGIC;
D: IN STD_LOGIC;
rst: IN STD_LOGIC;
Q: OUT STD_LOGIC);

END DFF;

ARCHITECTURE Behavioral OF DFF IS
BEGIN
PROCESS (clk, rst)
BEGIN
IF (rst="1) THEN
Q<=0
ELSIF (clkEVENT and clk ='1") THEN
Q<=D;
END IF;
END PROCESS;
END Behavioral:

TESTING THE DFF

Generate the Test Bench
Check the code, you will see this:
constant clk_period : time := 1us;

This line defines the period of the clock used in simulation

10

THE CLK PROCESS

This process gives the clock its square wave form.
clk_process :process

begin

clk <="'0";

walt for clk_period/2;

clk <="1"

walt for clk_period/2;
end process;

11

THE STIMULUS PROCESS

Use this process to test the flip flop
stim_proc: process
begin
-- hold reset state till before rising edge.
wait for clk_period/2 - 100ns;
d<=*1}
wait for clk_period*5;
rst <=1
walit;

end process;

12

THE INITIAL WAIT

wait for clk_period/2 - 100ns

If the stimulus changes at the same time of the clock,

then the flip flop has no time to read the value and
store It.

So, the 100ns shift is to give time for the signal to
stabilize before the rising edge of the clock.

13

SIMULATION TIME

The clock period is 1 us, and we need about 10
clocks to simulate enough test cases.

If we run the simulation, it will only run for 1 us.

To change it, right-click on “Simulate Behavioral
Model”, click on “Process Properties”, and enter
10 us in the “Simulated Run Time” field.

14

| SIMULATION TIME

adder_test - behavior (adder_tes
uut - adder - Behavioral {nbit
[dff_test - behavior (dff_test.vhd
i [y uut - dff - Behavioral (dff.vhe

F R[5

sg: dff_test - behavior | : 66

1Sim Simulator 67
P2 Behavioral Check Syntax : 68
[simulate Behavioral Model 69

AAerta/MFRF/AFF teat iaim heh swal

Property Name

| »

Use Custom Semulation Command File

Custom Smulation Command File

<incremental

Incremental Compilation

-nodebug

+r)

Compile for HDL Debugging
Use Custom Project File
Custom Project Flename
Run for Spedfied Time

KU

rd

Simulation Run Time

10us

Waveform Database Flename

C:/Projects/DFF /dff_test_isim_beh.wdb

Other Compiler Options

Value Range Chedk

F

4.

Spedfy Search Directories for “Indude

el o]

Snerifv 'define Mamn Name and Yalie

Property display level: Iﬁ.dvanced 'I ¥ Display switch names

o |

Cancel |

Applvl

Default

15

D-FLIPFLOP wiTH syncHRONOUS RESET)

Notice the difference when Reset becomes

synchronous

d— -, |1 X Trig* |0
o 0 1 Trig |1

clk—>
| 0 0 Trig |0
rst

16

D-F L I PF LOP(WITH SYNCHRONOUS RESET)

ENTITY DFF IS

PORT (clk: IN STD_LOGIC;
D: IN STD_LOGIC;
rst: IN STD_LOGIC;
Q: OUT STD_LOGIC):

END DFF;

ARCHITECTURE Behavioral OF DFF IS
BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT and clk ='1") THEN
IF (rst ='1”) THEN
Q<=0
ELSE
Q<=D;
END IF;
END IF;
END PROCESS;
END Behavioral; Y

FLOP REGISTER

=An N-bit register is a bank of N flip-flops that share a
common CLK input, so that all bits of the register are

updated at the same time.

=Registers are the key building block of most sequential
circuits.

ClLEAR

Do

D

>

SET

2,

=]

s
L

CLK

18

HANDS-ON 2: FLOP REGISTER

(WITH ASYNCHRONOUS RESET)

n bits n bits

clk

reset

* Dynamic assignment statement:
q <= (others =>'0’);

19

HANDS-ON 2: FLOP REGISTER

(WITH ASYNCHRONOUS RESET)

library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC_ARITH.all;

entity flopr is

generic (n : NATURAL := 32);

port(clk, reset: in STD_LOGIC;

d: in STD _LOGIC VECTOR(n-1 downto 0);

g: out STD_LOGIC VECTOR(n-1 downto 0));

end; 20

HANDS-ON 2: FLOP REGISTER

- (WITH ASYNCHRONOUS RESET)
architecture behavioral of flopr is

begin
process(clk, reset)
begin
If reset="1' then g <= (others =>'0");
Elsif rising_edge(clk) then
q<=d,
end If;
end process;

21

end:

vJ K_ F F(WITH ASYNCHRONOUS RESET)

T 94 1 |x |x |Xx |0 |1
. J - KEFF
K— N 0 0 0 Trig | No Change
clk —> 9 _
| 0 0 1 Trig 1 0 1
rst 0 1 0 Trig 1 O
0O |1 |1 |™9 | Toggle

22

\J K_ F F(WITH ASYNCHRONOUS RESET)

ENTITY JK_FF IS
PORT (clk: INSTD _LOGIC;

J,Ki INSTD_LOGIC;
st: NSTD LOGIC;
Q, Qbar: OUT STD_LOGICO);

END JK_FF;

\] K- F F(WITH ASYNCHRONOUS RESET)

ARCHITECTURE JK_FFArch OF JK_FF IS
SIGNAL state: STD_LOGIC,;
SIGNAL input: STD_LOGIC VECTOR(1 DOWNTO 0);

BEGIN

input <= J & K: IF (rst="1") THEN
PROCESS (clk, rst) state <="0’;
BEGIN ELSIF (clkEVENT AND clk ='1") THEN
IIEFL(rISIt::'Slt;E)lkt;I—E%EE’I\N(Iy';I'AND lk ="1") THEN CASE (inpUt) IS
O e WHEN "11" => state <= NOT
state
o WHEN "10" => state <="1";
END PROCESS: WHEN "01" => state <="0"
QbQ :: SNta(;?I'; ot WHEN OTHERS => null;
ar <= State, .
END JK_FFArch ; END CASE;

END IF; “

Thanks

25

