
COMPUTER ARCHITECTURE
LAB3 FCIS Ainshams University

Spring2021

AGENDA

• Sequential code

Process

If statement

• Hands-on 1: D -FF

• Hands-on 2: Generic Building Block of MIPS: n-bit
Flop register

• JK- FF

2

SEQUENTIAL CODE

▪ As the VHDL statements are inherently concurrent,
then sequential circuits can not be implemented
directly.

▪ It must be enclosed in sequential block which
guarantees sequential execution .

3

SEQUENTIAL CODE

▪ PROCESSES, FUNCTIONS, and PROCEDURES
are the only sections of code that are executed
sequentially.

▪ Any of these blocks is still concurrent with any other
statements placed outside it.

▪ There are statements that allowed only inside
sequential code like IF and CASE statements.

4

PROCESS

A PROCESS is executed every time a signal in the
sensitivity list changes

ARCHITECTURE myarch OF myentity IS

BEGIN

...

PROCESS (sensitivity list)

BEGIN

(sequential code)

END PROCESS;

...

END myarch; 5

PROCESS

To construct a synchronous circuit, monitoring a signal is
necessary (for example clk)

A common way of detecting a signal change is by means of
the EVENT attribute

IF (clk'EVENT AND clk='1')... -- EVENT attribute

IF (NOT clk'STABLE AND clk='1')…-- STABLE attribute6

THE IF STATEMENT

IF/ELSE
Creates priority-encoded logic.

ARCHITECTURE myarch OF myentity IS

BEGIN
PROCESS (clk, rst)
BEGIN
IF (rst = ‘1’) THEN

. . .

ELSIF (clk'EVENT AND clk = ‘1’) THEN
. . .

ELSE
. . .

END IF;
END PROCESS;

END myarch; 7

Check the usage of if statement and PROCESS to
write D Flip Flop

RST D Clk Q

1 X X 0

0 1 Trig 1

0 0 Trig 0

8

D-FLIPFLOP (WITH ASYNCHRONOUS RESET)

ARCHITECTURE Behavioral OF DFF IS

BEGIN

PROCESS (clk, rst)

BEGIN

IF (rst = '1') THEN

Q <= '0' ;

ELSIF (clk'EVENT and clk = '1') THEN

Q <= D ;

END IF;

END PROCESS;

END Behavioral;

9

ENTITY DFF IS

PORT (clk: IN STD_LOGIC;

D: IN STD_LOGIC;

rst: IN STD_LOGIC;

Q: OUT STD_LOGIC);

END DFF;

HANDS-ON 1: D-FF(WITH ASYNCHRONOUS RESET)

TESTING THE DFF

Generate the Test Bench

Check the code, you will see this:

constant clk_period : time := 1us;

This line defines the period of the clock used in simulation

10

THE CLK PROCESS

This process gives the clock its square wave form.

clk_process :process

begin

clk <= '0';

wait for clk_period/2;

clk <= '1';

wait for clk_period/2;

end process;

11

THE STIMULUS PROCESS

Use this process to test the flip flop

stim_proc: process

begin

-- hold reset state till before rising edge.

wait for clk_period/2 - 100ns;

d <= ‘1';

wait for clk_period*5;

rst <= ‘1';

wait;

end process; 12

THE INITIAL WAIT

wait for clk_period/2 - 100ns

If the stimulus changes at the same time of the clock,
then the flip flop has no time to read the value and
store it.

So, the 100ns shift is to give time for the signal to
stabilize before the rising edge of the clock.

13

SIMULATION TIME

The clock period is 1 us, and we need about 10
clocks to simulate enough test cases.

If we run the simulation, it will only run for 1 us.

To change it, right-click on “Simulate Behavioral
Model”, click on “Process Properties”, and enter
10 us in the “Simulated Run Time” field.

14

SIMULATION TIME

15

Notice the difference when Reset becomes
synchronous

rst D Clk Q

1 X Trig* 0

0 1 Trig 1

0 0 Trig 0

16

D-FLIPFLOP(WITH SYNCHRONOUS RESET)

D-FLIPFLOP(WITH SYNCHRONOUS RESET)

17

ARCHITECTURE Behavioral OF DFF IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk'EVENT and clk = '1’) THEN

IF (rst = '1’) THEN

Q <= '0' ;

ELSE

Q <= D ;

END IF;

END IF;

END PROCESS;

END Behavioral;

ENTITY DFF IS

PORT (clk: IN STD_LOGIC;

D: IN STD_LOGIC;

rst: IN STD_LOGIC;

Q: OUT STD_LOGIC);

END DFF;

FLOP REGISTER

▪An N-bit register is a bank of N flip-flops that share a
common CLK input, so that all bits of the register are
updated at the same time.

▪Registers are the key building block of most sequential
circuits.

18

HANDS-ON 2: FLOP REGISTER
(WITH ASYNCHRONOUS RESET)

19

flopr

d

n bits

clk

reset

q

n bits

• Dynamic assignment statement:

q <= (others => '0’);

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

entity flopr is

generic (n : NATURAL := 32);

port(clk, reset: in STD_LOGIC;

d: in STD_LOGIC_VECTOR(n-1 downto 0);

q: out STD_LOGIC_VECTOR(n-1 downto 0));

end; 20

HANDS-ON 2: FLOP REGISTER
(WITH ASYNCHRONOUS RESET)

architecture behavioral of flopr is

begin

process(clk, reset)

begin

if reset='1' then q <= (others => '0’);

Elsif rising_edge(clk) then

q <= d;

end if;

end process;

end;
21

HANDS-ON 2: FLOP REGISTER
(WITH ASYNCHRONOUS RESET)

rst J K Clk Q Q’

1 X X X 0 1

0 0 0 Trig No Change

0 0 1 Trig 0 1

0 1 0 Trig 1 0

0 1 1 Trig Toggle

22

JK-FF(WITH ASYNCHRONOUS RESET)

ENTITY JK_FF IS

PORT (clk: IN STD_LOGIC;

J, K: IN STD_LOGIC;

rst: IN STD_LOGIC;

Q, Qbar: OUT STD_LOGIC);

END JK_FF;

23

JK-FF(WITH ASYNCHRONOUS RESET)

24

ARCHITECTURE JK_FFArch OF JK_FF IS
SIGNAL state: STD_LOGIC;
SIGNAL input: STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
input <= J & K;
PROCESS (clk, rst)
BEGIN

IF (rst='1') THEN
state <= '0';

ELSIF (clk'EVENT AND clk = '1') THEN
CASE (input) IS
WHEN "11" => state <= NOT state;

WHEN "10" => state <= '1';

WHEN "01" => state <= '0';

WHEN OTHERS => null;

END CASE;

END IF;

END PROCESS;
Q <= state;

Qbar <= NOT state;
END JK_FFArch ;

IF (rst='1') THEN
state <= '0';

ELSIF (clk'EVENT AND clk = '1') THEN
CASE (input) IS

WHEN "11" => state <= NOT
state;

WHEN "10" => state <= '1';

WHEN "01" => state <= '0';

WHEN OTHERS => null;

END CASE;

END IF;

JK-FF(WITH ASYNCHRONOUS RESET)

Thanks

25

