

COMPUTER ARCHITECTURE LAB1 SYNTHESIZED VHDL CODING

FCIS Ainshams University Spring2021

AGENDA

- •Need to reprogrammable hardware (FPGA)
- Introduction to VHDL
- •Code Structure
- •Hands-on 1: AND gate +Simulator Environment
- •Data types
- •Generic building blocks of MIPS:
 - •Hands-on 2: sl2
 - •Hands-on3: generic 2×1 MUX

NEED TO PROGRAMMABLE HARDWARE

To Design a hardware solution

- Define the problem
- Design the Logic circuit
- Implement the design
- Evaluate and test the hardware circuit
- What you will do to change this hardware solution
- This is the ASIC (application-specific integrated_ circuit)

Ex: after we launch a satellite to its orbit, we need to change some of its logic ???!

FPGA

Logic Blocks (CLBs)

Field Programmable Gate Arrays (FPGA) is an integrated circuit that is capable of being reprogrammed after its manufacture using HDL

INTRODUCTION TO VHDL (1)

•VHDL stands for VHSIC HDL.

- VHSIC: Very High-Speed Integrated Circuits
- HDL: Hardware Description Language
- •It describes the behavior of an electronic circuit or system.
 - It can be translated into a hardware circuit
 - It can be tested on software simulation before hardware implementation
- •VHDL is a standard, technology/vendor independent language, and is therefore **portable** and **reusable**.

INTRODUCTION TO VHDL (2)

Circuit Design Flow:

- VHDL Code & simulation
- Synthesized to Netlist file
- Map, Place and route
- Generated Bit-stream
- Download and test

CODE STRUCTURE

VHDL Code is divided into 3 parts:

- Library declaration: like using statement in C#
- Entity: specifies I/O pins of the circuit
- Architecture: describes the behavior or function of the circuit

CODE STRUCTURE: LIBRARY(1)

LIBRARY declarations:

- Contains a list of all libraries to be used in the design.
- Most common libraries are ieee, std, work
- A library contains packages,
- and a package contains parts
- (data types & subprograms)

LIB	RAR	Υ					
	PACKAGE						
		FUNCTIONS					
	PROCEDURES						
	COMPONENTS						
		CONSTANTS					
		TYPES					

CODE STRUCTURE: LIBRARY (2)

To use a library,

LIBRARY library_name;

USE library_name.package_name. package_parts;

For example:

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY std;
USE std.standard.all;
LIBRARY work;
USE work.all;
```

- -- A semi-colon (;) indicates
- -- the end of a statement or
- -- declaration, while a double
- -- dash (--) indicates a comment.

CODE STRUCTURE: ENTITY (1)

Entity is the most basic building block in a design. It is a list (with specifications) of all input and output pins (ports) of the circuit.

entity <entity_name> is
port (

<port_name> : <mode> <type>;

<other ports>...);

end <entity_name>;

• port_name: any name, except VHDL reserved words

• signal_mode: IN, OUT, or INOUT.

• signal_type: BIT, STD_LOGIC, INTEGER,...

CODE STRUCTURE: ENTITY (2)

For example, let us consider the AND gate entity, its entity can be described as:

entity and_gate IS
port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 x : out STD_LOGIC;
 x <= a AND b;
end and_gate;</pre>

CODE STRUCTURE: ARCHITECTURE

Architecture contains the VHDL code, which describes the behavior of the entity.

ARCHITECTURE archi_name OF entity_name IS [declarations] BEGIN (code) END archi_name;

CODE STRUCTURE: ARCHITECTURE

For example, the architecture of AND gate should be:

ARCHITECTURE myarch OF and gate IS

BEGIN

END myarch;

CODE NOTES

- •VHDL is case insensitive.
- •Its statements are inherently concurrent (parallel).
- •Only statements placed inside a PROCESS, FUNCTION, or PROCEDURE are executed sequentially.
- •VHDL is a hardware description language, so our main goal is the RTL not reducing number of code lines.

HANDS-ON1: AND GATE CIRCUIT

Implement and test the AND gate circuit.

XILINX GETTING STARTED (1)

We will use Xilinx ISE 12 to write and simulate VHDL code

ISE Project Navigato	r													
File Edit View Project	Source Process	Tools	Window	Help						1.00				
1 D D D D D A	1%00×	10	a K	I DE	PX	XP	3	A III	D].	F K?	徽四	1	0	
Getting Started	ć	7 ×												
No project Select one of the buttons Also, check out the "What available from the "Help" n	t is open below to get started 's New" help page, nenu.	·												
New Project														
Open Project														
Open Example														
Project Browser														
Generalia														
Console		_												_
4														

Console

Errors

Warnings

16

XILINX GETTING STARTED (2)

Create a New Project from File > New Project

🚾 New Project W	Wizard	×
Create New Po Specify pro	Project oject location and type.	
Enter a name Name: Location: Description:	e, locations, and comment for the project Lab 1Demo C:\Projects\Lab 1Demo	
Select the typ Top-level sou (HDL More Info	pe of top-level source for the project urce type: Next >	▼ Cancel

XILINX GETTING STARTED (3)

Specify the Language to be "VHDL"

Property Name	Value	
Product Category	All	~
Family	Virtex2P	~
Device	XC2VP20	~
Package	FF896	~
Speed	-7	~
Top-Level Source Type	HDL	~
Synthesis Tool	XST (VHDL/Verilog)	\mathbf{v}
Simulator	ISE Simulator (VHDL/Verilog)	~
Preferred Language	VHDL	~
Enable Enhanced Design Summary		
Enable Message Filtering		
Display Incremental Messages		

XILINX GETTING STARTED (4)

Choose New Source > VHDL Module and choose a name

📧 New Proj	ject Wizard - Create New Sourc	e	
Create a Ne	w Source	Туре	New <u>S</u> ource
1	New Source Wizard - Selec	t Source Type	
	 State Diagram Test Bench WaveForm User Document Verilog Module Verilog Test Fixture VHDL Module VHDL Library VHDL Package 		File name: andgate Location:
Creating a ne Additi	HDL Test Bench		
<u>M</u> ore Info	More Info		Add to project < Back Next > Cancel

XILINX GETTING STARTED (5)

Use entity wizard to create your entity

So	urce File	Туре				New <u>S</u> ource	
1	🚾 New Source V	Vizard - Define Mod	ule				
	Entity Name	andgate					
	Architecture Name	myarch					
	Port Name	Direction		Bus	MSB	LSB	^
	а	in	~				
	Ь	in	~				
	×	out	~				
			- ·				
reating a ne		in	~				
Additi		in .	<u> </u>				
		in .	×				
		in in	×				
		in	_				

20

XILINX GETTING STARTED (6)

Then click next buttons for subsequent dialogs till wizard is finished

📧 Xilinx - ISE - E:\Teaching\Architecture\2009\MyCode\ANDGate\ANDGate.ise - [Design Summary] 🚺 Eile Edit Yiew Project Source Process Window Help 🗋 🖻 🖩 🕼 🕾 🖄 🛍 🗶 🛤 🖉 🔛 🔍 🗐 🖉 의 🖉 🖉 🖉 🖄 🕅 🕅 🖉 👘 🖉 👘 🕅 🕅 💌 i 💡 | f 🕼 🛛 | 藥 試 就 就 就 1 () ④ () → | 三 일 三 일 | Λ % % % ④ 数 Sources 🔀 FPGA Design Summary ~ **ANDGATE Project Status** Sources for: Synthesis/Implementation 4 Design Overview **Project File:** ANDGate.ise Current State: New ANDGate Summary Module Name: andgate • Errors: 😑 - 🛄 хс2vp20-7ff896 IOB Properties Target Device: xc2vp20-7ff896 Warnings: 🖥 🛗 andg... Timing Constraints ISE 9.2i Pinout Report Product Version: Updated: Fri Mar 13 14:33:48 2009 Clock Report Errors and Warnings. ANDGATE Partition Summary 💵 🎗 Sources 🙈 Snapshots 🛛 📄 Libraries Synthesis Messages No partition information was found. Translation Messages Processes Map Messages Processes for: andgate - myarch **Detailed Reports** Place and Route Messages Add Existing Source Report Name Status Infos Generated Errors Warnings Timing Messages Create New Source . Synthesis Report 📄 Bitgen Messages View Design Summary Σ A.C. Translation Report ÷-🏏 Design Utilities Project Properties ÷-🎾 User Constraints Map Report Enable Enhanced Design Summary Synthesize - XST Ē 🐴 Place and Route Report Enable Message Filtering Implement Design €**-** ₹) Display Incremental Messsages Static Timing Report É 🛃 Generate Programming File Enhanced Design Summary Contents Bitgen Report ☑ Show Partition Data Show Errors Show Warnings Show Failing Constraints Show Clock Report 5 < Erocesses 🐘 andgate.vhd 📡 Design Summary Started : "Launching ISE Text Editor to edit andgate.vhd". ~ Started : "Launching Design Summary". ~ < 📃 Console Errors 🔥 Warnings Tcl Shell ሕ Find in Files Ln 1 Col 1

21

XILINX GETTING STARTED (7)

Double click on source file on left panel and complete the architecture code

XILINX GETTING STARTED (8)

After editing, click **save** button Then, in processes panel, **double click** "Synthesize – XST" item to synthesize your code

XILINX GETTING STARTED (9)

After synthesizing, click view RTL Schematic button

24

SIMULATION GETTING STARTED(1)

- To simulate your VHDL code, you need to add a simulation module
- To do so, in Sources panel, select "Behavioral Simulation"
- Right click the module you want to test and click on New Source

SIMULATION GETTING STARTED(2)

A wizard will pop-up, select "VHDL Test Bench" and write a file name. Then, click Next till the end of the wizard

📂 New Source Wizard	×
Select Source Type Select source type, file name and its location.	
 Schematic Implementation Constraints File User Document Verilog Module Verilog Test Fixture VHDL Module VHDL Library VHDL Package VHDL Test Bench 	File name: ANDGateTest Location: C:\Test
More Info	Next > Cancel

SIMULATION GETTING STARTED(3)

Delete the parts of the code that have "**clock**" because our circuit is a simple combinational circuit.

SIMULATION GETTING STARTED(4)

Insert your **Test code** in the highlighted part

```
signal c : std logic;
54
55
   BEGIN
56
57
      -- Instantiate the Unit Under Test (UUT)
58
59
       uut: testmodule PORT MAP (
               a => a,
60
               b => b,
61
               c => c
62
63
             );
64
       -- Stimulus process
65
       stim proc: process
66
       begin
67
68
                    <u>reset state for 100ms.</u>
           wait for 100ms:
69
           -- insert stimulus here
70
71
          wait;
72
       end process;
73
74
75
    END;
76
```

```
TEST CODE
```

```
stim_proc: process begin
       -- hold reset state for 100ms.
       wait for Ons;
      a <= '1';
       b <= '0';
       wait for 100ns;
       a <= '1';
       b <= '1';
       wait for 100ns;
       wait;
end process;
```

RUN SIMULATION

- 1. Highlight the "behavior" link first
- 2. double click "Simulate Behavioral Model"

EXERCISE: COMBINATIONAL CIRCUIT

Modify the AND gate to be the following logical expression

a AND ((a AND b) OR (NOT(c)))

Solution: d <= a AND ((a AND b) OR (NOT(c)))

DATA TYPES

We can define **SIGNAL** within the architecture to store intermediate values

Examples for data types:

- •BIT (and BIT_VECTOR): 2-level logic ('0', '1').
- STD_LOGIC (STD_LOGIC_VECTOR): 8-valued logic system
- BOOLEAN: True, False.
- •NATURAL: Non-negative integers

You can also use these data types to define PORT in ENTITY definition

DATA TYPES

- BIT (and BIT_VECTOR): 2-level logic ('0', '1'). Examples:
- SIGNAL x: BIT;
- SIGNAL y: BIT_VECTOR (3 DOWNTO 0);
 - --y is a 4-bit vector, leftmost bit being the MSB. MSB 3 2 1 0 LSB
- SIGNAL w: BIT_VECTOR (0 TO 3);

--w is a 4-bit vector, rightmost bit being the MSB.

DATA TYPES

STD_LOGIC (STD_LOGIC_VECTOR): 8-valued

- **'**X'
- **'**0' Forcing Low
- **'**1' Forcing High
- 'Ζ' High impedance
- 'W' Weak unknown
- 'L' Weak low
- 'H' Weak high
- د_• Don't care

Forcing Unknown (synthesizable unknown) (synthesizable logic '1') (synthesizable logic '0') (synthesizable tri-state buffer)

HANDS-ON2: SHIFTER CIRCUIT

A shifter is a combinational circuit with one or more inputs and an equal number of outputs. The outputs are shifted with respect to the inputs.

Ex.: Left shifter circuit:

To multiply by powers of 2

In (8)	Out (8)
00000001	00000010
00000010	00000100
01010101	10101010

Out = IN(6-0) & "0"

HANDS-ON2: SHIFTER CIRCUIT

Shift left by 2 (multiply by 4)

ENTITY sl2 IS

PORT(a: IN STD_LOGIC_VECTOR(31 downto 0);

y: OUT STD_LOGIC_VECTOR(31 downto 0);

END sl2;

ARCHITECTURE myarch OF sl2 IS

BEGIN

y <= a(29 downto 0) & "00";

END myarch;

WHEN STATEMENT

WHEN/ELSE statement allows selecting the signal value according to specific conditions

For example,

ARCHITECTURE myarch OF myentity IS BEGIN

y <= a WHEN sel="00" ELSE b WHEN sel="01" ELSE c WHEN sel="10" ELSE d; END myarch;

MULTIPLEXER $(2^n \times 1)$

- Select one of the input 2ⁿ to be produced at the output line
- Selection is done according to the selection lines (n lines)
- Each input line might be (single line) or (multiple lines = bus)

S 1	S 0	0
0	0	IO
0	1	I1
1	0	I2
1	1	I3

MULTIPLEXER (4 X 1) (1)

Multiplexer Implementation

• Structural:

$$O = I_0 S_1 S_0 + I_1 S_1 S_0 + I_2 S_1 S_0 + I_3 S_1 S_0$$

Behavioral:

$$O \le I_0$$
 when $S_1S_0 = "00"$ else
 I_1 when $S_1S_0 = "01"$ else
 I_2 when $S_1S_0 = "10"$ else
 I_3 when $S_1S_0 = "11"$ else
'Z';

MULTIPLEXER (4×1) (4)

LIBRARY IEEE; **ARCHITECTURE** MuxArch OF Mux IS USE IEEE.std_logic_1164.all; **BEGIN ENTITY Mux IS** O <= I0 WHEN (S="00") ELSE PORT(I3: IN STD_LOGIC; I1 WHEN (S="01") ELSE I2: IN STD_LOGIC; I2 WHEN (S="10") ELSE I1: IN STD_LOGIC; I3 WHEN (S="11") ELSE I0: 'Z'; IN STD_LOGIC; **S**: IN STD_LOGIC_VECTOR (1 downto 0); **END** MuxArch: **O**: OUT STD_LOGIC); END Mux;

MULTIPLEXER (4 X 1) (4)

- Let's see circuit RTL & the consumed instances.
- This circuit consumes
- 1 Multiplexers 4*1

The same functionality, but with appropriate instances

MULTIPLEXER $(3BIT 4 \times 1)_{USING BUS}$

ENTITY Mux IS

PORT(I3: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I2: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

- I1: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
- I0: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
- S: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
- O: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END Mux;

ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN S="00" ELSE I1 WHEN S="01" ELSE I2 WHEN S="10" ELSE I3 WHEN S="11" ELSE "ZZZ";

END MuxArch;

MULTIPLEXER (n BIT 4×1)_{USING BUS}

ENTITY Mux IS

Generic (n: integer := 3);

PORT(I3: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

- I2: IN STD_LOGIC_VECTOR (**n-1** DOWNTO 0);
- I1: IN STD_LOGIC_VECTOR (**n-1** DOWNTO 0);
- I0: IN STD_LOGIC_VECTOR (**n-1** DOWNTO 0);
- S: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
- O: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0));

END Mux;

ARCHITECTURE MuxArch OF Mux IS BEGIN

> O <= I0 WHEN S="00" ELSE I1 WHEN S="01" ELSE I2 WHEN S="10" ELSE I3 WHEN S="11" ELSE "ZZZ";

END MuxArch;

HANDS-ON3: MULTIPLEXER (n BIT 2×1)

Default value of n is 8 bits ENTITY Mux2 IS Generic (n: integer := 8);

PORT(I0,I1: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 S: IN STD_LOGIC ;
 y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));
END Mux;

ARCHITECTURE MuxArch OF Mux2 IS BEGIN

y <= I1 WHEN S ELSE I0; END MuxArch;

Thanks