
COMPUTER ARCHITECTURE
LAB1

SYNTHESIZED VHDL CODING

FCIS Ainshams University

Spring2021

AGENDA
•Need to reprogrammable hardware (FPGA)

•Introduction to VHDL

•Code Structure

•Hands-on 1: AND gate +Simulator Environment

•Data types

•Generic building blocks of MIPS:

•Hands-on 2: sl2

•Hands-on3: generic 2×1 MUX

2

NEED TO PROGRAMMABLE
HARDWARE

To Design a hardware solution

Define the problem

Design the Logic circuit

 Implement the design

Evaluate and test the hardware circuit

What you will do to change this hardware solution

This is the ASIC (application-specific integrated circuit)

Ex: after we launch a satellite to its orbit, we need to
change some of its logic ???!

3

http://en.wikipedia.org/wiki/Application-specific_integrated_circuit

FPGA

Field Programmable Gate Arrays (FPGA) is an
integrated circuit that is capable of being
reprogrammed after its manufacture using HDL
code.

FPGA architecture
4

INTRODUCTION TO VHDL (1)

•VHDL stands for VHSIC HDL.
 VHSIC: Very High-Speed Integrated Circuits

 HDL: Hardware Description Language

•It describes the behavior of an electronic circuit or system.

 It can be translated into a hardware circuit

 It can be tested on software simulation before hardware
implementation

•VHDL is a standard, technology/vendor independent language,
and is therefore portable and reusable.

5

INTRODUCTION TO VHDL (2)

Circuit Design Flow:

VHDL Code & simulation

Synthesized to Netlist file

Map, Place and route

Generated Bit-stream

Download and test

6

CODE STRUCTURE

VHDL Code is divided into 3 parts:

Library declaration: like using statement in C#

Entity: specifies I/O pins of the circuit

Architecture: describes the behavior or function of
the circuit

7

CODE STRUCTURE: LIBRARY(1)

LIBRARY declarations:

Contains a list of all libraries to be used in the
design.

Most common libraries are ieee, std, work

A library contains packages,

and a package contains parts

 (data types & subprograms)

8

CODE STRUCTURE: LIBRARY (2)

To use a library,

LIBRARY library_name;

USE library_name.package_name.
package_parts;

For example:

9

CODE STRUCTURE: ENTITY (1)

Entity is the most basic building block in a design. It is a
list (with specifications) of all input and output pins (ports)
of the circuit.

entity <entity_name> is

port (

<port_name> : <mode> <type>;

<other ports>...);

end <entity_name>;

 port_name: any name, except VHDL reserved words

 signal_mode: IN, OUT, or INOUT.

 signal_type: BIT, STD_LOGIC, INTEGER,…

10

CODE STRUCTURE: ENTITY (2)

For example, let us consider the AND gate entity, its
entity can be described as:

entity and_gate IS

port (a : in STD_LOGIC;

b : in STD_LOGIC;

x : out STD_LOGIC);

x <= a AND b;

end and_gate;
11

Architecture contains the VHDL code, which describes the
behavior of the entity.

ARCHITECTURE archi_name OF entity_name IS

[declarations]

BEGIN

(code)

END archi_name;

12

CODE STRUCTURE: ARCHITECTURE

For example, the architecture of AND gate should be:

ARCHITECTURE myarch OF and_gate IS

BEGIN

x <= a AND b;

END myarch;

13

CODE STRUCTURE: ARCHITECTURE

CODE NOTES

•VHDL is case insensitive.

•Its statements are inherently concurrent (parallel).

•Only statements placed inside a PROCESS,
FUNCTION, or PROCEDURE are executed
sequentially.

•VHDL is a hardware description language, so our
main goal is the RTL not reducing number of code
lines.

14

Implement and test the AND gate circuit.

15

HANDS-ON1: AND GATE CIRCUIT

XILINX GETTING STARTED (1)

We will use Xilinx ISE 12 to write and simulate VHDL code

16

Create a New Project from File > New Project

17

XILINX GETTING STARTED (2)

Specify the Language to be “VHDL”

18

XILINX GETTING STARTED (3)

Choose New Source > VHDL Module and choose a name

19

XILINX GETTING STARTED (4)

Use entity wizard to create your entity

20

XILINX GETTING STARTED (5)

Then click next buttons for subsequent dialogs till wizard is
finished

21

XILINX GETTING STARTED (6)

Double click on source file on left panel and complete the
architecture code

22

Library Declarations

Entity Definition

Architecture

XILINX GETTING STARTED (7)

After editing, click save button

Then, in processes panel, double
click “Synthesize – XST” item to
synthesize your code

23

XILINX GETTING STARTED (8)

After synthesizing , click view RTL Schematic button

24

XILINX GETTING STARTED (9)

SIMULATION GETTING STARTED(1)

• To simulate your VHDL
code, you need to add a
simulation module

• To do so, in Sources
panel, select “Behavioral
Simulation”

• Right click the module
you want to test and
click on New Source

25

A wizard will pop-up, select “VHDL Test Bench” and write a
file name. Then, click Next till the end of the wizard

26

SIMULATION GETTING STARTED(2)

Delete the parts of the
code that have “clock”
because our circuit is a
simple combinational
circuit.

27

SIMULATION GETTING STARTED(3)

Insert your Test
code in the
highlighted part

28

SIMULATION GETTING STARTED(4)

TEST CODE

29

stim_proc: process begin

-- hold reset state for 100ms.

wait for 0ns;

a <= '1';

b <= '0';

wait for 100ns;

a <= '1';

b <= '1';

wait for 100ns;

wait;

end process;

RUN SIMULATION

1. Highlight the “behavior” link first

2. double click “Simulate Behavioral
Model”

30

SIMULATION

31

Click on “Fit to Screen” button

Modify the AND gate to be the following logical expression

32

EXERCISE: COMBINATIONAL CIRCUIT

a AND b

NOT(c)
(a AND b) OR (NOT(c))

a AND ((a AND b) OR (NOT(c)))

Solution:

d <= a AND ((a AND b) OR (NOT(c)))

We can define SIGNAL within the architecture to store
intermediate values

Examples for data types:
BIT (and BIT_VECTOR): 2-level logic (‘0’, ‘1’).

STD_LOGIC (STD_LOGIC_VECTOR): 8-valued logic
system

BOOLEAN: True, False.

NATURAL: Non-negative integers

You can also use these data types to define PORT in ENTITY
definition

33

DATA TYPES

BIT (and BIT_VECTOR): 2-level logic (‘0’, ‘1’).

Examples:

SIGNAL x: BIT;

SIGNAL y: BIT_VECTOR (3 DOWNTO 0);

--y is a 4-bit vector, leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 3);

--w is a 4-bit vector, rightmost bit being the MSB.

34

2 1 03MSB LSB

1 2 30LSB MSB

DATA TYPES

STD_LOGIC (STD_LOGIC_VECTOR): 8-valued
logic system

35

DATA TYPES

A shifter is a combinational circuit with one or more inputs and
an equal number of outputs. The outputs are shifted with respect
to the inputs.

Ex.: Left shifter circuit:

To multiply by powers of 2

36

In (8) Out (8)

00000001 00000010

00000010 00000100

01010101 10101010

HANDS-ON2: SHIFTER CIRCUIT

Shifting left
Out = IN(6-0) & “0”

ENTITY sl2 IS

PORT(a: IN STD_LOGIC_VECTOR(31 downto 0);

y: OUT STD_LOGIC_VECTOR(31 downto 0);

END sl2;

ARCHITECTURE myarch OF sl2 IS

BEGIN

y <= a(29 downto 0) & "00";

END myarch; 37

sl2

a

32 bits

y

32 bits

HANDS-ON2: SHIFTER CIRCUIT

Shift left by 2

(multiply by 4)

WHEN/ELSE statement allows selecting the signal
value according to specific conditions

For example,

ARCHITECTURE myarch OF myentity IS

BEGIN

y <= a WHEN sel="00" ELSE

b WHEN sel="01" ELSE

c WHEN sel="10" ELSE

d;

END myarch;
38

WHEN STATEMENT

• Select one of the input 2n to be produced at the output line

• Selection is done according to the selection lines (n lines)

• Each input line might be (single line) or (multiple lines =
bus)

39

S1 S0 O

0 0 I0

0 1 I1

1 0 I2

1 1 I3

MULTIPLEXER (2n ×1)

Multiplexer Implementation

Structural:

O = I0S1'S0'+ I1S1'S0+ I2S1S0'+ I3S1S0

Behavioral:

O <= I0 when S1S0 = “00” else

I1 when S1S0 = “01” else

I2 when S1S0 = “10” else

I3 when S1S0 = “11” else

‘Z’;

40

MULTIPLEXER (4 X 1) (1)

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY Mux IS

PORT(I3: IN STD_LOGIC;

I2: IN STD_LOGIC;

I1: IN STD_LOGIC;

I0: IN STD_LOGIC;

S: IN STD_LOGIC_VECTOR (1 downto 0);

O: OUT STD_LOGIC);

END Mux;

;

41

ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN (S=”00”) ELSE

I1 WHEN (S=“01”) ELSE

I2 WHEN (S=“10”) ELSE

I3 WHEN (S=“11”) ELSE

‘Z’;

END MuxArch;

MULTIPLEXER (4 X 1) (4)

MULTIPLEXER (4 X 1) (4)
Let’s see circuit RTL & the
consumed
instances.

This circuit consumes
 1 Multiplexers 4*1

The same functionality, but
with appropriate instances

42

ENTITY Mux IS

PORT(I3: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I2: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I1: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I0: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

S: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

O: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END Mux;

ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN S=“00” ELSE

I1 WHEN S=“01” ELSE

I2 WHEN S=“10” ELSE

I3 WHEN S=“11” ELSE

"ZZZ";

END MuxArch;
43

MULTIPLEXER (3BIT 4×1)USING BUS

ENTITY Mux IS

Generic (n: integer := 3);

PORT(I3: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

I2: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

I1: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

I0: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

S: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

O: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0));

END Mux;

ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN S=“00” ELSE

I1 WHEN S=“01” ELSE

I2 WHEN S=“10” ELSE

I3 WHEN S=“11” ELSE

"ZZZ";

END MuxArch;
44

MULTIPLEXER (n BIT 4×1)USING BUS

45

ENTITY Mux2 IS

Generic (n: integer := 8);

PORT(I0,I1: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

S: IN STD_LOGIC ;

y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));

END Mux;

ARCHITECTURE MuxArch OF Mux2 IS

BEGIN

y <= I1 WHEN S ELSE I0;

END MuxArch;

HANDS-ON3: MULTIPLEXER (n BIT 2×1)

Default value of n is 8 bits

Thanks

46

