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AGENDA 
•Need to reprogrammable hardware (FPGA)

•Introduction to VHDL

•Code Structure

•Hands-on 1: AND gate +Simulator Environment 

•Data types

•Generic building blocks of MIPS: 

•Hands-on 2: sl2

•Hands-on3: generic 2×1 MUX 
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NEED TO PROGRAMMABLE 
HARDWARE

To Design a hardware solution

Define the problem

Design the Logic circuit

 Implement the design

Evaluate and test the hardware circuit

What you will do to change this hardware solution

This is the ASIC (application-specific integrated circuit)

Ex: after we launch a satellite to its orbit, we need to 
change some of its logic ???!
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http://en.wikipedia.org/wiki/Application-specific_integrated_circuit


FPGA

Field Programmable Gate Arrays (FPGA) is an 
integrated circuit that is capable of being 
reprogrammed after its manufacture using HDL
code.

FPGA architecture
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INTRODUCTION TO VHDL (1)

•VHDL stands for VHSIC HDL. 
 VHSIC: Very High-Speed Integrated Circuits

 HDL: Hardware Description Language

•It describes the behavior of an electronic circuit or system.

 It can be translated into a hardware circuit

 It can be tested on software simulation before hardware 
implementation

•VHDL is a standard, technology/vendor independent language, 
and is therefore portable and reusable. 
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INTRODUCTION TO VHDL (2)

Circuit Design Flow:

VHDL Code & simulation 

Synthesized to Netlist file 

Map, Place and route 

Generated Bit-stream

Download and test
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CODE STRUCTURE 

VHDL Code is divided into 3 parts:

Library declaration: like using statement in C#

Entity: specifies I/O pins of the circuit

Architecture: describes the behavior or  function of 
the circuit
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CODE STRUCTURE: LIBRARY(1)

LIBRARY declarations: 

Contains a list of all libraries to be used in the 
design. 

Most common libraries are ieee, std, work

A library contains packages,

and a package contains parts

 (data types & subprograms)
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CODE STRUCTURE: LIBRARY (2)

To use a library, 

LIBRARY library_name;

USE library_name.package_name. 
package_parts;

For example:
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CODE STRUCTURE: ENTITY (1)

Entity is the most basic building block in a design. It is a 
list (with specifications) of all input and output pins (ports) 
of the circuit. 

entity <entity_name> is

port (

<port_name> : <mode> <type>;

<other ports>...);

end <entity_name>; 

 port_name: any name, except VHDL reserved words

 signal_mode: IN, OUT, or INOUT. 

 signal_type: BIT, STD_LOGIC, INTEGER,…
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CODE STRUCTURE: ENTITY (2)

For example, let us consider the AND gate entity, its 
entity can be described as:

entity and_gate IS

port ( a : in STD_LOGIC;

b : in STD_LOGIC;

x : out STD_LOGIC);

x <= a AND b;

end and_gate;
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Architecture contains the VHDL code, which describes the 
behavior of the entity.

ARCHITECTURE archi_name OF entity_name IS

[declarations]

BEGIN

(code)

END archi_name;
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CODE STRUCTURE: ARCHITECTURE



For example, the architecture of AND gate should be:

ARCHITECTURE myarch OF and_gate IS

BEGIN

x <= a AND b;

END myarch;
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CODE STRUCTURE: ARCHITECTURE



CODE NOTES

•VHDL is case insensitive.

•Its statements are inherently concurrent (parallel). 

•Only statements placed inside a PROCESS, 
FUNCTION, or PROCEDURE are executed 
sequentially.

•VHDL is a hardware description language, so our 
main goal is the RTL not reducing number of code 
lines.
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Implement and test the AND gate circuit.

15

HANDS-ON1: AND GATE CIRCUIT



XILINX GETTING STARTED (1)

We will use Xilinx ISE 12 to write and simulate VHDL code
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Create a New Project from File > New Project

17

XILINX GETTING STARTED (2)



Specify the Language to be “VHDL”
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XILINX GETTING STARTED (3)



Choose New Source > VHDL Module and choose a name

19

XILINX GETTING STARTED (4)



Use entity wizard to create your entity
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XILINX GETTING STARTED (5)



Then click next buttons for subsequent dialogs till wizard is 
finished
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XILINX GETTING STARTED (6)



Double click on source file on left panel and complete the 
architecture code 
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Library Declarations

Entity Definition

Architecture

XILINX GETTING STARTED (7)



After editing, click save button

Then, in processes panel, double 
click “Synthesize – XST” item to 
synthesize your code
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XILINX GETTING STARTED (8)



After synthesizing , click view RTL Schematic button
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XILINX GETTING STARTED (9)



SIMULATION GETTING STARTED(1)

• To simulate your VHDL 
code, you need to add a 
simulation module

• To do so, in Sources 
panel, select “Behavioral 
Simulation”

• Right click the module 
you want to test and 
click on New Source
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A wizard will pop-up, select “VHDL Test Bench” and write a 
file name. Then, click Next till the end of the wizard
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SIMULATION GETTING STARTED(2)



Delete the parts of the 
code that have “clock” 
because our circuit is a 
simple combinational 
circuit.
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SIMULATION GETTING STARTED(3)



Insert your Test 
code in the 
highlighted part
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SIMULATION GETTING STARTED(4)



TEST CODE
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stim_proc: process   begin

-- hold reset state for 100ms.      

wait for 0ns;      

a <= '1';

b <= '0';

wait for 100ns;

a <= '1';

b <= '1';

wait for 100ns;      

wait;   

end process;



RUN SIMULATION

1. Highlight the “behavior” link first

2. double click “Simulate Behavioral 
Model”
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SIMULATION
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Click on “Fit to Screen” button



Modify the AND gate to be the following logical expression
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EXERCISE: COMBINATIONAL CIRCUIT

a AND b

NOT(c)
(a AND b) OR (NOT(c))

a AND ((a AND b) OR (NOT(c)))

Solution:

d <=  a AND ((a AND b) OR (NOT(c)))



We can define SIGNAL within the architecture to store 
intermediate values

Examples for data types:
BIT (and BIT_VECTOR): 2-level logic (‘0’, ‘1’).

STD_LOGIC (STD_LOGIC_VECTOR): 8-valued logic 
system

BOOLEAN: True, False.

NATURAL: Non-negative integers

You can also use these data types to define PORT in ENTITY 
definition 
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DATA TYPES



BIT (and BIT_VECTOR):  2-level logic (‘0’, ‘1’).

Examples:

SIGNAL x: BIT; 

SIGNAL y: BIT_VECTOR (3 DOWNTO 0);

--y is a 4-bit vector, leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 3);

--w is a 4-bit vector, rightmost bit being the MSB.
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2 1 03MSB LSB

1 2 30LSB MSB

DATA TYPES



STD_LOGIC (STD_LOGIC_VECTOR): 8-valued 
logic system
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DATA TYPES



A shifter is a combinational circuit with one or more inputs and 
an equal number of outputs. The outputs are shifted with respect 
to the inputs. 

Ex.: Left shifter circuit:

To multiply by powers of 2 
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In (8) Out (8)

00000001 00000010

00000010 00000100

01010101 10101010

HANDS-ON2: SHIFTER CIRCUIT

Shifting left
Out = IN(6-0) & “0”



ENTITY sl2 IS

PORT(a: IN STD_LOGIC_VECTOR(31 downto 0);

y: OUT STD_LOGIC_VECTOR(31 downto 0);

END sl2;  

ARCHITECTURE myarch OF sl2 IS

BEGIN

y <= a(29 downto 0) & "00";

END myarch; 37

sl2

a

32 bits

y

32 bits

HANDS-ON2: SHIFTER CIRCUIT

Shift left by 2 

(multiply by 4)



WHEN/ELSE statement allows selecting the signal 
value according to specific conditions

For example,

ARCHITECTURE myarch OF myentity IS

BEGIN

y <= a WHEN sel="00" ELSE

b WHEN sel="01" ELSE

c WHEN sel="10" ELSE

d;

END myarch;
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WHEN STATEMENT



• Select one of the input 2n to be produced at the output line

• Selection is done according to the selection lines (n lines)

• Each input line might be ( single line ) or (multiple lines = 
bus )
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S1 S0 O

0 0 I0

0 1 I1

1 0 I2

1 1 I3

MULTIPLEXER (2n  ×1)



Multiplexer Implementation 

Structural:

O = I0S1'S0'+ I1S1'S0+ I2S1S0'+ I3S1S0

Behavioral: 

O <= I0 when S1S0 = “00” else

I1 when S1S0 = “01” else

I2 when S1S0 = “10” else

I3 when S1S0 = “11” else

‘Z’;
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MULTIPLEXER ( 4 X 1) (1)



LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY Mux IS

PORT(I3: IN STD_LOGIC;

I2: IN STD_LOGIC;

I1: IN STD_LOGIC;

I0: IN STD_LOGIC;

S: IN STD_LOGIC_VECTOR ( 1 downto 0);

O: OUT STD_LOGIC);

END Mux;  

;
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ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN (S=”00”) ELSE

I1 WHEN (S=“01”) ELSE

I2 WHEN (S=“10”) ELSE

I3 WHEN (S=“11”) ELSE

‘Z’;

END MuxArch;

MULTIPLEXER ( 4 X 1) (4)



MULTIPLEXER ( 4 X 1) (4)
Let’s see circuit RTL & the 
consumed 
instances.

This circuit consumes 
 1 Multiplexers  4*1

The same functionality, but 
with appropriate instances  

42



ENTITY Mux IS

PORT( I3: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I2: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I1: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

I0: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

S: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

O: OUT STD_LOGIC_VECTOR(2 DOWNTO 0) );

END Mux;  

ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN S=“00” ELSE

I1 WHEN S=“01” ELSE

I2 WHEN S=“10” ELSE

I3 WHEN S=“11” ELSE

"ZZZ";

END MuxArch;
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MULTIPLEXER (3BIT  4×1)USING BUS



ENTITY Mux IS

Generic (n: integer := 3); 

PORT( I3: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

I2: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

I1: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

I0: IN STD_LOGIC_VECTOR (n-1 DOWNTO 0);

S: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

O: OUT STD_LOGIC_VECTOR (n-1 DOWNTO 0) );

END Mux;  

ARCHITECTURE MuxArch OF Mux IS

BEGIN

O <= I0 WHEN S=“00” ELSE

I1 WHEN S=“01” ELSE

I2 WHEN S=“10” ELSE

I3 WHEN S=“11” ELSE

"ZZZ";

END MuxArch;
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MULTIPLEXER (n BIT  4×1)USING BUS
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ENTITY Mux2 IS

Generic (n: integer := 8); 

PORT( I0,I1: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);

S: IN STD_LOGIC ;

y: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));

END Mux;  

ARCHITECTURE MuxArch OF Mux2 IS

BEGIN

y <= I1 WHEN S ELSE I0; 

END MuxArch;

HANDS-ON3: MULTIPLEXER (n BIT  2×1)

Default value of n is 8 bits



Thanks
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