
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5th

Edition

Chapter 4

The Processor

Dr. Randa Mohamed

Agenda

◼ MIPS Pipeline:

◼ Control Hazards

◼ Exceptions

Chapter 4 — The Processor — 2

Chapter 4 — The Processor — 3

Control Hazards

◼ Pipeline hazards involving branches.

◼ Branch determines flow of control

◼ Fetching next instruction depends on branch
outcome

◼ Pipeline can’t always fetch correct instruction

◼ Still working on ID stage of branch

Chapter 4 — The Processor — 4

Branch Hazards

◼ If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

7

Chapter 4 — The Processor — 5

1) Stall on Branch

◼ Wait until branch outcome determined before

fetching next instruction

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

7

Chapter 4 — The Processor — 7

2) Branch Prediction

◼ Longer pipelines can’t readily determine

branch outcome early

◼ Stall penalty becomes unacceptable

◼ Predict outcome of branch

◼ Only stall if prediction is wrong

◼ In MIPS pipeline

◼ Can predict branches not taken

◼ Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 8

◼ If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush:

1) change the

original control

values to 0s

(EX,MEM)

2) Set instruction

register to 0

(ID-nop)

2) Branch Prediction: not Taken

7

Chapter 4 — The Processor — 9

Datapath with Hazard Detection

0 X XX

Chapter 4 — The Processor — 10

◼ We have assumed the next PC for a branch is

selected in the MEM stage

◼ But if we move the branch execution earlier in

the pipeline, then fewer instructions need be

flushed

◼ In MIPS pipeline

◼ Need to compare registers and compute target early
in the pipeline

◼ Add hardware to do it in ID stage

3) Reducing Branch Delay

Chapter 4 — The Processor — 11

◼ Move hardware to determine outcome to ID stage

◼ Target address adder

◼ Register comparator

◼ Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7)

3) Reducing Branch Delay

Chapter 4 — The Processor — 12

Example: Branch Taken
This signal

zeros

Instruction

field

in IF/ID

(flushes)

0

Chapter 4 — The Processor — 13

Example: Branch Taken

Chapter 4 — The Processor — 15

More-Realistic Branch Prediction

◼ Static branch prediction

◼ Based on typical branch behavior

◼ Example: loop branches

◼ Predict backward branches taken

◼ Predict forward branches not taken

◼ Dynamic branch prediction

◼ Hardware measures actual branch behavior

◼ e.g., record recent history of each branch

◼ Assume future behavior will continue the trend

◼ When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 16

Dynamic Branch Prediction

◼ In deeper and superscalar pipelines, branch penalty is

more significant

◼ Use dynamic prediction

◼ Branch prediction buffer (aka branch history table)

◼ Indexed by recent branch instruction addresses

◼ Stores outcome (taken/not taken)

◼ To execute a branch

◼ Check table, expect the same outcome

◼ Start fetching from fall-through or target

◼ If wrong, flush pipeline and flip prediction:

◼ 1-bit predictor vs 2-bit predictor

Chapter 4 — The Processor — 21

Data Hazards for Branches

◼ If a comparison register is a destination of 2nd

or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

◼ Can resolve using forwarding

Chapter 4 — The Processor — 22

Data Hazards for Branches

◼ If a comparison register is a destination of

preceding ALU instruction or 2nd preceding

load instruction

◼ Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Chapter 4 — The Processor — 23

Data Hazards for Branches

◼ If a comparison register is a destination of

immediately preceding load instruction

◼ Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Chapter 4 — The Processor — 24

Pipeline Summary

◼ Pipelining improves performance by increasing

instruction throughput

◼ Executes multiple instructions in parallel

◼ Each instruction has the same latency

◼ Subject to hazards

◼ Structural, data, control

◼ Instruction set design affects complexity of

pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 25

Exceptions and Interrupts

◼ “Unexpected” events requiring change in flow of

control

◼ Exception: Arises within the CPU (undefined opcode, overflow)

◼ Interrupt: From an external I/O controller

◼ Dealing with them without sacrificing performance is

hard

§
4
.9

 E
x
c
e
p
tio

n
s

Chapter 4 — The Processor — 26

Handling Exceptions

◼ In MIPS, exceptions managed by a System Control
Coprocessor (CP0)

1. Save PC of offending (or interrupted) instruction

◼ In MIPS: Exception Program Counter (EPC)

2. Save indication of the problem

◼ In MIPS: Cause register

◼ We’ll assume 1-bit: 0 for undefined opcode, 1 for overflow

3. Jump to handler at 8000 00180

4. If restartable

◼ Take corrective action

◼ use EPC to return to program

Otherwise

◼ Terminate program

◼ Report error using EPC, cause, …

Chapter 4 — The Processor — 29

Exceptions in a Pipeline

◼ Another form of control hazard

◼ Consider overflow on add in EX stage

add $1, $2, $1

◼ Prevent $1 from being clobbered

◼ Complete previous instructions

◼ Flush add and subsequent instructions

◼ Set Cause and EPC register values

◼ Transfer control to handler

◼ Similar to mispredicted branch

◼ Use much of the same hardware

Chapter 4 — The Processor — 30

Pipeline with Exceptions

Chapter 4 — The Processor — 32

Exception Example

◼ Exception on add in

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

◼ Handler

80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 33

Exception Example

Chapter 4 — The Processor — 34

Exception Example

Chapter 4 — The Processor — 68

Concluding Remarks

◼ ISA influences design of datapath and control

◼ Datapath and control influence design of ISA

◼ Pipelining improves instruction throughput

using parallelism

◼ More instructions completed per second

◼ Latency for each instruction not reduced

◼ Hazards: structural, data, control

◼ Multiple issue and dynamic scheduling (ILP)

◼ Dependencies limit achievable parallelism

◼ Complexity leads to the power wall

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Problems to Solve

◼ 4.14, 4.15, 4.17

Chapter 4 — The Processor — 69

