
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 2

Instructions: Language

of the Computer

Chapter 2 (Continue)

◼ Representing Instructions (Instruction Format)

Chapter 2 — Instructions: Language of the Computer — 2

Chapter 2 — Instructions: Language of the Computer — 3

Stored Program Computers

◼ Instructions represented in
binary, just like data

◼ Instructions and data stored in
memory

◼ Programs can operate on
programs

◼ e.g., compilers, linkers, …

◼ Binary compatibility allows
compiled programs to work on
different computers

◼ Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 4

Representing Instructions

◼ Instructions are encoded in binary

◼ Called machine code

◼ MIPS instructions

◼ Encoded as 32-bit instruction words

◼ Small number of formats encoding operation code

(opcode), register numbers, …

◼ Regularity!

◼ Register numbers

◼ $t0 – $t7 are reg’s 8 – 15

◼ $t8 – $t9 are reg’s 24 – 25

◼ $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 5

1) MIPS R-format Instructions

◼ Instruction fields

◼ op: operation code (opcode)

◼ rs: first source register number

◼ rt: second source register number

◼ rd: destination register number

◼ shamt: shift amount (00000 for now)

◼ funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 6

R-format Example -Arithmetic

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 7

Hexadecimal

◼ Base 16

◼ Compact representation of bit strings

◼ 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

◼ Example: eca8 6420

◼ 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 8

R-format Example -Shift Operations

◼ shamt: how many positions to shift

◼ Shift left logical

◼ Shift left and fill with 0 bits

◼ sll by i bits multiplies by 2i

◼ Shift right logical

◼ Shift right and fill with 0 bits

◼ srl by i bits divides by 2i

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

R-format Example -Shift Operations

sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

Chapter 2 — Instructions: Language of the Computer — 9

Chapter 2 — Instructions: Language of the Computer — 10

2) MIPS I-format Instructions

◼ Immediate arithmetic and load/store instructions

◼ rt: destination or source register number

◼ Constant: –215 to +215 – 1

◼ Address: offset added to base address in rs

◼ Design Principle 4: Good design demands
good compromises
◼ Different formats complicate decoding, but allow 32-bit

instructions uniformly

◼ Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

MIPS Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 11

In the table above, “reg” means a register number

between 0 and 31, “address” means a 16-bit address,

and “n.a.” (not applicable) means this field does not

appear in this format.

base

Example on Representation

If $t1 has the base of the array A and $s2

corresponds to h, the assignment statement

A[300] = h + A[300]; is compiled into

lw $t0,1200($t1)
add $t0,$s2,$t0

sw $t0,1200($t1)

Chapter 2 — Instructions: Language of the Computer — 12

Example on Representation cont.

Chapter 2 — Instructions: Language of the Computer — 13

MIPS Machine Language so far

Chapter 2 — Instructions: Language of the Computer — 14

Chapter 2 — Instructions: Language of the Computer — 15

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants

◼ Most constants are small

◼ 16-bit immediate is sufficient

◼ For the occasional 32-bit constant

lui rt, constant

◼ Copies 16-bit constant to left 16 bits of rt

◼ Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 16

Branch Addressing
§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

◼ PC-relative addressing

◼ Target address = PC+4 + address × 4

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Branch on equal : beq r1, r2, L

Branch on not equal: bne r1,r2,L

PC relative brach

Program Counter and control flow

◼ Every machine has a program counter (called

PC) that points to the next instruction to be

executed.

Chapter 2 — Instructions: Language of the Computer — 17

0000000000000000000000000000000 0 Byte (8bits)

0000000000000000000000000000001 1

0000000000000000000000000000010 2

0000000000000000000000000000011 3

0000000000000000000000000000100 4

.

.

.

Address (32bit) Instruction Memory

Instruction1

PC

Instruction2

Program Counter and control flow

◼ Ordinarily, PC is incremented by 4 after each

instruction is executed. A branch instruction

alters the flow of control by modifying the PC.

Chapter 2 — Instructions: Language of the Computer — 18

0000000000000000000000000000000 0 Byte (8bits)

0000000000000000000000000000001 1

0000000000000000000000000000010 2

0000000000000000000000000000011 3

0000000000000000000000000000100 4

.

.

.

Address (32bit) Instruction Memory

Instruction1

PC

Instruction2

Program Counter and control flow

◼ Ordinarily, PC is incremented by 4 after each

instruction is executed. A branch instruction

alters the flow of control by modifying the PC.

Chapter 2 — Instructions: Language of the Computer — 19

0000000000000000000000000000000 0 Byte (8bits)

0000000000000000000000000000001 1

0000000000000000000000000000010 2

0000000000000000000000000000011 3

0000000000000000000000000000100 4

.

.

.

Address (32bit) Instruction Memory

Instruction1

PC

Instruction2

Program Counter and control flow

◼ bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Chapter 2 — Instructions: Language of the Computer — 20

0000000000000000000000000000000 0 Instruction 1: bne

0000000000000000000000000000100 4 Instruction 2 add

0000000000000000000000000001000 8 Instruction 3 j

0000000000000000000000000001100 12 Instruction 4 Else: sub

0000000000000000000000000010000 16 Instruction 5

.

Address (32bit) Instruction Memory

PC

PC+4

Program Counter and control flow

◼ bne $s3, $s4, 2
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Chapter 2 — Instructions: Language of the Computer — 21

0000000000000000000000000000000 0 Instruction 1: bne

0000000000000000000000000000100 4 Instruction 2 add

0000000000000000000000000001000 8 Instruction 3 j

0000000000000000000000000001100 12 Instruction 4 Else: sub

0000000000000000000000000010000 16 Instruction 5

.

Address (32bit) Instruction Memory

PC

PC+4

Program Counter and control flow

◼ bne $s3, $s4, 2
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Chapter 2 — Instructions: Language of the Computer — 22

0000000000000000000000000000000 0 Instruction 1: bne

0000000000000000000000000000100 4 Instruction 2 add

0000000000000000000000000001000 8 Instruction 3 j

0000000000000000000000000001100 12 Instruction 4 Else: sub

0000000000000000000000000010000 16 Instruction 5

.

Address (32bit) Instruction Memory

PC

PC+4

op rs rt address

5 19 20 2

Program Counter and control flow

◼ bne $s3, $s4, 2
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Chapter 2 — Instructions: Language of the Computer — 23

0000000000000000000000000000000 0 Instruction 1: bne

0000000000000000000000000000100 4 Instruction 2 add

0000000000000000000000000001000 8 Instruction 3 j

0000000000000000000000000001100 12 Instruction 4 Else: sub

0000000000000000000000000010000 16 Instruction 5

.

Address (32bit) Instruction Memory

PC

PC+4

op rs rt address

5 19 20 2

◼ Target address = PC+4 + address × 4

= 4 + 2 ×4 =12

Chapter 2 — Instructions: Language of the Computer — 24

Branching Far Away

◼ If branch target is too far to encode with 16-bit

offset, assembler rewrites the code

◼ Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: …

-215
→ + 215 -1

Chapter 2 — Instructions: Language of the Computer — 25

◼ Jump (j and jal) targets could be anywhere

in text segment

op address

6 bits 26 bits

◼ Direct jump addressing

◼ Target address = address × 4

◼ j 10000

◼ op = 2, go to address = 10000 × 4

3) MIPS J-format Instructions

Chapter 2 — Instructions: Language of the Computer — 26

Target Addressing Example

◼ Loop code from earlier example

◼ Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 2 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 27

Jump Addressing

Chapter 2 — Instructions: Language of the Computer — 28

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 31

Assembler Pseudoinstructions

◼ Most assembler instructions represent machine

instructions one-to-one

◼ Pseudoinstructions: figments of the

assembler’s imagination

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

◼ $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 41

Concluding Remarks

◼ Design principles
1.Simplicity favors regularity

2.Smaller is faster

3.Make the common case fast

4.Good design demands good compromises

◼ Layers of software/hardware
◼ Compiler, assembler, hardware

◼ Instruction categories:
◼ Arithmetic/logical (equations)

◼ Data transfer (memory data structures)

◼ Conditional branch (if statement and while loops)

◼ Unconditinoal jump (procedure/fn call and return)

§
2
.2

0
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Problems to solve

◼ 2.14 to 2.17, 2.21, 2.25, 2.29 to 2.41, 2.47

Chapter 2 — Instructions: Language of the Computer — 43

