COMPUTER ORGANIZATION AND DESIGN 5th

The Hardware/Software Interface Edition

Chapter 2

Instructions: Language
of the Computer

Chapter 2 (Continue)

Representing Instructions (Instruction Format)

Chapter 2 — Instructions: Language of the Computer — 2

Stored Program Computers

e

Accounting program :
(machine code) :

e

Editor program

(machine code)

—_—— e — ——————————

C compiler

Processor (machine code)

e

—————————————

——— ——————— sy

Source code in C
for editor program

S S

Instructions represented In
binary, just like data

Instructions and data stored In
memory

Programs can operate on
programs

e.g., compilers, linkers, ...
Binary compatibility allows
compiled programs to work on
different computers

Standardized ISAs

Chapter 2 — Instructions: Language of the Computer — 3

Representing Instructions

Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 are reg’s 8 — 15
$t8 — $t9 are reg’s 24 — 25
$s0 — $s7 are reg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 4

1) MIPS R-format Instructions

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)

Chapter 2 — Instructions: Language of the Computer — 5

R-format Example -Arithmetic

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
add $t0, $s1, $s2
special $s1 $s2 $t0 0 add
0 17 18 8 0 32
000000 | 10001 | 10010 | 01000 | 00000 | 100000

Chapter 2 — Instructions: Language of the Computer — 6

00000010001100100100000000100000, = 0232402044

Hexadecimal

Base 16

Compact representation of bit strings
4 bits per hex digit

O (0000 |4 |0100 |8 |1000 |c 1100
1 (0001 (5 (0101 |9 |1001 |d ([1101
2 |0010 |6 |0110 |a |1010 |e |1110
3 |0011 |7 (0111 (b |1011 (f |1111

Example: eca8 6420
1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 7

R-format Example -shift Operations

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
shamt: how many positions to shift
Shift left logical

Shift left and fill with 0 bits
s 11 by i bits multiplies by 2!
Shift right logical

Shift right and fill with O bits
sr1 by i bits divides by 2!

Chapter 2 — Instructions: Language of the Computer — 8

R-format Example -shift Operations

sll $t2,5s0,4 # reg $t2 = reg $s0 << 4 bits

op £ q rd shamt funct

0 0 16 10 4 0

Chapter 2 — Instructions: Language of the Computer — 9

2) MIPS I-format Instructions

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions

rt: destination or source register number
Constant; -2 to +2° -1
Address: offset added to base address in rs

1 Design Principle 4: Good design demands
good compromises

Different formats complicate decoding, but allow 32-bit
Instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 10

MIPS Instruction Encoding

mmunnnm

R 324
sub (subtract) R 0 reg | reg | reg 0 34en n.a.
add immediate I 8en | TEE | reg | na. n.a. n.a. constant
1w (load word) I 35n |, €8 | reg | na. n.a. n.a. address
sw (store word) I 43@/ reg | reg | n.a. n.a. n.a. address

base

In the table above, “reg” means a register number
between 0 and 31, "address” means a 16-bit address,
and “n.a.” (not applicable) means this field does not
appear in this format.

Chapter 2 — Instructions: Language of the Computer — 11

Example on Representation

If $t1 has the base of the array A and $s2
corresponds to h, the assignment statement

A[300] = h + A[300]; 1s compiled into
lw St0,1200(St1)

add St0,Ss2,St0

sw S$t0,1200(St1)

address/
shamt

1200
8 32
43 9 8 1200

Chapter 2 — Instructions: Language of the Computer — 12

Example on Representation

address/
shamt

1200

0 18 8 8 0 32
43 9 8 l 1200
100011 01001 01000 0000 0200 1011 0000

000000 10010 01000 01000 00000 100000
101011 01001 01000 0000 0200 1011 0000

Chapter 2 — Instructions: Language of the Computer — 13

MIPS Machine Language so far

_teme Lrome | beme _______1__comem__

R add $s1,%s2,%s3
sub R 0 18 19 17 0 34 sub $s1,%s2,%s3
addi I 8 18 17 100 addi $s1,%$s2,100
lw I 35 18 17 100 Iw $s1,100(%s2)
SW I 43 18 17 100 sw $s1,100(%$s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions are 32 bits long
R-format R op rs rt rd shamt funct Arithmetic instruction format
I-format [op rs rt address Data transfer format

Chapter 2 — Instructions: Language of the Computer — 14

32-bit Constants

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Most constants are small
16-bit immediate is sufficient

For the occasional 32-bit constant
Tui rt, constant

Copies 16-bit constant to left 16 bits of rt
Clears right 16 bits of rt to 0

Tui $s0, 61 0000 0000 0011 11010000 OO00 0000 0000

ori $s0, $s0O, 2304 | 0000 0000 0011 1101|0000 1001 0000 0000

Chapter 2 — Instructions: Language of the Computer — 15

Branch Addressing

Branch on equal : beqrl, r2, L
Branch on not equal: bne r1,r2,L

PC relative brach

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC+4 + address x 4

Chapter 2 — Instructions: Language of the Computer — 16

Program Counter and control flow

Every machine has a program counter (called
PC) that points to the next instruction to be

executed.
Address (32bit) Instruction Memory

PC , 0000000000000000000000000000000 | 0 [Byte (8bits) B

0000000000000000000000000000001
0000000000000000000000000000010
0000000000000000000000000000011
0000000000000000000000000000100

>Instruction1

~ w N O

>Instructionz

_—

Chapter 2 — Instructions: Language of the Computer — 17

Program Counter and control flow

Ordinarily, PC Is Incremented by 4 after each
Instruction Is executed. A branch instruction

alters the flow of control by modifying the PC.
Address (32bit) Instruction Memory

E» 0000000000000000000000000000000 | O | Byte (8hits) B
0000000000000000000000000000001 |1 Instructionl
0000000000000000000000000000010 | 2 B
0000000000000000000000000000011 | 3 B
0000000000000000000000000000100 (4 h

_Instruction?

_—

Chapter 2 — Instructions: Language of the Computer — 18

Program Counter and control flow

Ordinarily, PC Is Incremented by 4 after each
Instruction Is executed. A branch instruction

alters the flow of control by modifying the PC.
Address (32bit) Instruction Memory

l—

0000000000000000000000000000000 | O | Byte (8hits)
0000000000000000000000000000001 |1 Instructionl
0000000000000000000000000000010 | 2 B
0000000000000000000000000000011 | 3 B
E,OOOOOOOOOOOOOOOOOOOOOOOOOOOO100 4 h
_Instruction?

_—

Chapter 2 — Instructions: Language of the Computer — 19

Program Counter and control flow

bne $s3, $s4, Else
add $s0, $s1, $s2

] EX1t
Else: sub $s0, $s1, $s2
EX1t: ..
Address (32bit) Instruction Memory
PC . 0000000000000000000000000000000 [0 | Instruction 1: bne

PC+4. 0000000000000000000000000000100 |4 | Instruction 2 add

0000000000000000000000000001000 |8 | Instruction 3 |
0000000000000000000000000001100 |12 | Instruction 4 Else: sub
0000000000000000000000000010000 |16 | Instruction 5

Chapter 2 — Instructions: Language of the Computer — 20

Program Counter and control flow

bne $s3, $s4, 2
add $s0, $s1, $s2

] EX1t
Else: sub $s0, $s1, $s2
EX1t: ..
Address (32bit) Instruction Memory
PC . 0000000000000000000000000000000 [0 | Instruction 1: bne

PC+4. 0000000000000000000000000000100 |4 | Instruction 2 add

0000000000000000000000000001000 |8 | Instruction 3 |
0000000000000000000000000001100 |12 | Instruction 4 Else: sub
0000000000000000000000000010000 |16 | Instruction 5

Chapter 2 — Instructions: Language of the Computer — 21

Program Counter and control flow
bne $s3, $s4, 2

op rs rt address
5 19 20 2
5 e
Else: sub $s0, $s1, $s2
Exit: ..
Address (32bit) Instruction Memory
PC | 0000000000000000000000000000000 |0 | Instruction 1: bne

PC+4. 0000000000000000000000000000100 |4 | Instruction 2 add

0000000000000000000000000001000 |8 | Instruction 3 |
0000000000000000000000000001100 |12 | Instruction 4 Else: sub
0000000000000000000000000010000 |16 | Instruction 5

Chapter 2 — Instructions: Language of the Computer — 22

Program Counter and control flow
bne $s3, $s4, 2

op rs rt address
5 19 20 2

| FAN

Target address = PC+4 + address x 4

=4 + 2 x4 =12
Address (32bif) [nstruction Memory

PC . 0000000000000000000000000000000 |0 | Instruction 1: bne
PC+4. 0000000000000000000000000000100 |4 | Instruction 2 add
0000000000000000000000000001000 |8 | Instruction 3 |
0000000000000000000000000001100 |12 | Instruction 4 Else: sub

0000000000000000000000000010000 |16 | Instruction 5

f— Chapter 2 — Instructions: Language of the Computer — 23

Branching Far Away

If branch target Is too far to encode with 16-bit

offset, assembler rewrites the code l
Example 28> 420l
beq $s0,%$s1, L1
l
bne $s0,%$s1, L2
j L1

L2: ..

Chapter 2 — Instructions: Language of the Computer — 24

3) MIPS J-format Instructions

Jump (J and jal) targets could be anywhere
In text segment

op address
6 bits 26 bits

Direct jump addressing
Target address = address x 4

j 10000
op = 2, go to address = 10000 x 4

Chapter 2 — Instructions: Language of the Computer — 25

Target Addressing Example

LLoop code from earlier example
Assume Loop at location 80000

Loop: s11 $t1, $s3, 2 80000 | O O | 19| 9 2 0
add $tl, $tl, $s6 80004 |0 9 22 9 o) 32
Tw $t0, 0($tl) 80008 | 35 9 8 o)
bne $t0, $s5, Exit 80012 | 5 8 | 21 2
addi $s3, $s3, 1 80016 | 8 19 | 16 1
i Loop 80020 | 2 20000

EXit: 80024

Chapter 2 — Instructions: Language of the Computer — 26

Jump Addressing

jump j 2500 go to 10000 Jump to target address
Unconditional— - 5 -
_ jump register jr $ra gotosra For switch, procedure return
um - - .
Jump jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call

Chapter 2 — Instructions: Language of the Computer — 27

<
A

Addressing Mode Summary

1. Immediate addressing

op rs rt Immediate

2. Register addressing

op | rs rt rd | ... |[funct Registers
I

Register

3. Base addressing

op | rs rt Address Memory
I
— ({9— [EeTramod] word
I
4. PC-relative addressing
op | rs rt Address Memory
I
PC (i) a— Word
I
5. Pseudodirect addressing
op Address Memory
I
PC (:) e——— Word
I

M<

MORGAN KAUFMANN

Chapter 2 — Instructions: Language of the Computer — 28

Assembler Pseudoinstructions

Most assembler instructions represent machine
Instructions one-to-one

Pseudoinstructions: figments of the
assembler’s 1imagination
move $tO0, $tl — add $t0, $zero, $tl

b1t $t0, $t1l, L — s1t $at, $t0, $tl
bne $at, $zero, L

$at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 31

Concluding Remarks

Design principles
Simplicity favors regularity
Smaller is faster
Make the common case fast
Good design demands good compromises

Layers of software/hardware
Compiler, assembler, hardware

Instruction categories:
Arithmetic/logical (equations)
Data transfer (memory data structures)
Conditional branch (if statement and while loops)
- Unconditinoal jJump (procedure/fn call and return)

Chapter 2 — Instructions: Language of the Computer — 41

Problems to solve
2.14102.17,2.21. 2.25 2.29t0 2.41, 2.47

Chapter 2 — Instructions: Language of the Computer — 43

