
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 2

Instructions: Language

of the Computer

Dr. Randa Mohamed

Chapter 2 (Continue)

◼ Categories of MIPS Instructions (Continue)

◼ Compiling If statements

◼ Compiling Loop Statements

◼ Procedure Calling

Chapter 2 — Instructions: Language of the Computer — 2

Categories of MIPS Instructions

• Arithmetic

• Logical

• Data transfer

• Conditional Branch

• Unconditional Jump

Chapter 2 — Instructions: Language of the Computer — 3

Chapter 2 — Instructions: Language of the Computer — 4

Conditional Branch

◼ Change the next instruction to be executed.

◼ Branch to a labeled instruction if a condition is
true. Otherwise, continue sequentially

1. beq $s0, $s1, L1
◼ if ($s0 == $s1) branch to instruction labeled L1;

2. bne $s0, $s1, L1
◼ if ($s0 != $s1) branch to instruction labeled L1;

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

◼ Example:

beq $s3, $s4, Mylabel
add $s0, $s1, $s2

Mylabel: sub …

Chapter 2 — Instructions: Language of the Computer — 5

More Conditional Branch

◼ Set result to 1 if a condition is true

◼ Otherwise, set to 0

3. slt $s0, $s1, $s2

◼ if ($s1 < $s2) $s0 = 1; else $s0 = 0;

4. slti $s0, $s1, constant

◼ if ($s1 < constant) s0 = 1; else s0 = 0;

◼ Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 6

Branch Instruction Design

◼ Why not blt, bge, etc?

◼ Hardware for <, ≥, … slower than =, ≠

◼ Combining with branch involves more work per

instruction

◼ beq and bne are the common case

◼ This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 7

More Conditional Branch

5. sltu $s0, $s1, $s2

◼ Set on less than unsigned

◼ if ($s1 < $s2) $s0 = 1; else $s0 = 0;

6. sltiu $s0, $s1, constant

◼ Set on less than immediate unsigned

◼ if ($s0 < constant) s0 = 1; else s0 = 0;

Chapter 2 — Instructions: Language of the Computer — 8

Signed vs. Unsigned

◼ Signed comparison: slt, slti

◼ Unsigned comparison: sltu, sltui

◼ Example

◼ $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

◼ $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

◼ slt $t0, $s0, $s1 # signed

◼ –1 < +1 $t0 = 1

◼ sltu $t0, $s0, $s1 # unsigned

◼ +4,294,967,295 > +1 $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 9

Unconditional Jump

◼ Jump to a labeled instruction

1. j L1
◼ unconditional jump to instruction labeled L1

(target address)

2. jr $ra
◼ unconditional jump to address saved in register

$ra

◼ Used for procedure call and branch far away

3. jal L1
◼ unconditional jump to instruction labeled L1, and

save current address in register $ra

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 10

Compiling If Statements

◼ C code:

if (i==j) f = g+h;
else f = g-h;

◼ f, g, … in $s0, $s1, …

◼ Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 11

Compiling Loop Statements

◼ C code:

while (save[i] == k) i += 1;

◼ i in $s3, k in $s5, address of save in $s6

◼ Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 12

Procedure Calling

◼ Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Main(){

…

..

Fun1(x);

…..

}

Fun1(int x){

int y = x+1;

return y;

}

Chapter 2 — Instructions: Language of the Computer — 13

Register Usage

◼ $a0 – $a3: arguments (reg’s 4 – 7)

◼ $v0, $v1: result values (reg’s 2 and 3)

◼ $t0 – $t9: temporaries

◼ Can be overwritten by callee

◼ $s0 – $s7: saved

◼ Must be saved/restored by callee

◼ $sp: stack pointer (reg 29)

◼ $fp: frame pointer (reg 30)

◼ $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 14

Procedure Call Instructions

◼ Procedure call: jump and link

◼ jal ProcedureLabel

◼ Address of following instruction put in $ra

◼ Jumps to target address

◼ Procedure return: jump register

◼ jr $ra

◼ Copies $ra to program counter

◼ Can also be used for computed jumps

Procedure Calling Summary

◼ The calling program, or caller, puts the

parameter values in $a0–$a3 and uses jal X

to jump to procedure X (sometimes named the

callee).

◼ The callee then performs the calculations,

places the results in $v0 and $v1, and returns

control to the caller using jr $ra.

Chapter 2 — Instructions: Language of the Computer — 15

Chapter 2 — Instructions: Language of the Computer — 16

Leaf Procedure Example

◼ C code:

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

◼ Arguments g, …, j in $a0, …, $a3

◼ f in $s0 (hence, need to save $s0 on stack)

◼ Result in $v0

Chapter 2 — Instructions: Language of the Computer — 17

Leaf Procedure Example

◼ MIPS code:

leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 18

Leaf Procedure Example

◼ MIPS code: Calling program:

add $s0, $t0,$t1

jal leaf_example

sub $s0,$s0,$v0

Chapter 2 — Instructions: Language of the Computer — 19

Local Data on the Stack

◼ Local data allocated by callee

◼ Procedure frame
◼ Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 20

Memory Layout

◼ Text: program code

◼ Static data: global variables

◼ e.g., static variables in C,
constant arrays and strings

◼ Dynamic data: heap

◼ Stack

Problems to solve

◼ 2.12

◼ Note that overflow occurs when the result is

outside the range of value that can be stored in 32

bits(n):

◼ Unsigned operation: Range: 0 to +2n – 1

(0 to +4,294,967,295)

◼ Signed operations: Range: –2n – 1 to +2n – 1 – 1

(–2,147,483,648 to +2,147,483,647)

◼ 2.19, 2.22, 2.23, 2.26, 2.29

Chapter 2 — Instructions: Language of the Computer — 21

