COMPUTER ORGANIZATION AND DESIGN 5th

The Hardware/Software Interface Edition

Chapter 2

Instructions: Language
of the Computer

Dr. Randa Mohamed

Chapter 2 (Continue)

Categories of MIPS Instructions (Continue)
Compiling If statements

Compiling Loop Statements

Procedure Calling

Chapter 2 — Instructions: Language of the Computer — 2

Categories of MIPS Instructions

Arithmetic

Logical

Data transfer
Conditional Branch
Unconditional Jump

Chapter 2 — Instructions: Language of the Computer — 3

Conditional Branch

Change the next instruction to be executed.

Branch to a labeled instruction If a condition 1s
true. Otherwise, continue sequentially

beq $s0, $s1, L1
If ($s0 == $s1) branch to instruction labeled L1;
bne $s0, $s1, L1
If ($s0 '= $s1) branch to instruction labeled L1;
Example:
beq $s3, $s4, Mylabel

add $s0, $s1, $s2
Mylabel: sub ..

Chapter 2 — Instructions: Language of the Computer — 4

More Conditional Branch

Set result to 1 if a condition Is true
Otherwise, setto 0
slt $s0, $s1, $s2
If ($s1 < $s2) $s0 =1, else $s0 = 0;

slti $s0, $sl1, constant
If ($s1 < constant) sO = 1, else sO = 0;

Use in combination with beq, bne

st $t0, $s1, $s2 # if ($sl1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 5

Branch Instruction Design

Why not b1t, bge, etc?

Hardware for <, >, ... slower than =, #

Combining with branch involves more work per
Instruction

beqg and bne are the common case

This Is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 6

More Conditional Branch
sltu $s0, $s1, $s?

Set on less than unsigned
If ($s1 < $s2) $s0 = 1; else $s0 = 0;
sltiu $s0, $sl, constant

Set on less than immediate unsigned
If ($s0 < constant) sO = 1, else sO = 0;

Chapter 2 — Instructions: Language of the Computer — 7

Signed vs. Unsigned

Signed comparison: s1t, s1t1
Unsigned comparison: s 1tu, s1tui

Example
$s0 = 11111111 11111111 1111 1111 1111 1111
$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0, $s0, $s1 # signed
“1<+1=%t0=1

sltu $t0, $s0, $s1 # unsigned
+4,294.967,295 > +1 = $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 8

Unconditional Jump

Jump to a labeled instruction
j L1
unconditional jump to instruction labeled L1
(target address)

jr $ra

unconditional jJump to address saved in register
$ra

Used for procedure call and branch far away

jal L1

unconditional jump to instruction labeled L1, and
save current address in register $ra

Chapter 2 — Instructions: Language of the Computer — 9

Compiling If Statements

C code: N N

if (i==j) f = g+h;

else ¥ = g-h; " -
f, g, ...1n $s0, $s1, ...

Compiled MIPS code: |

bne $s3, $s4, Else
add $s0, $s1, $s2
J EX1t

Else: sub $s0, $sl1, $s2

EXTT: o

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 10

Compiling Loop Statements

C code:
while (save[1] == k) 1 += 1;

1 in $s3, k in $s5, address of save in $s6
Compiled MIPS code:

Loop: sll $tl1, $s3, 2
add $t1, $t1, $s6
Tw $t0, 0($tl)
bne $t0, $s5, Exit
addi $s3, $s3, 1
] Loop

Chapter 2 — Instructions: Language of the Computer — 11

Procedure Calling

Steps required Main(){
Place parameters in registers
Transfer control to procedure PGS
Acquire storage for procedure }
Perform procedure’s operations Funi(int x){
Place result in register for caller | ™Mty =x+L;

returny;
Return to place of call }

Chapter 2 — Instructions: Language of the Computer — 12

Register Usage

$a0 — $a3: arguments (reg’s 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$sp: stack pointer (reg 29)
$fp: frame pointer (reg 30)
$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 13

Procedure Call Instructions

Procedure call: jump and link
jal ProcedureLabel
Address of following instruction put in $ra
Jumps to target address

Procedure return: jump register
jr $ra
Copies $ra to program counter
Can also be used for computed jumps

Chapter 2 — Instructions: Language of the Computer — 14

Procedure Calling Summary

The calling program, or caller, puts the
parameter values in $a0-$a3 and uses jal X
to jJump to procedure X (sometimes named the
callee).

The callee then performs the calculations,
places the results in $v0 and $v1, and returns
control to the caller using jr $ra.

Chapter 2 — Instructions: Language of the Computer — 15

|_eaf Procedure Example

C code:
int leaf_example (int g, h, 1, J)
{ 1nt f;
f=(+h -G+ 3);
return T;
}

Arguments g, ..., jin $a0, ..., $a3
f in $s0 (hence, need to save $s0 on stack)
Result in $v0

Chapter 2 — Instructions: Language of the Computer — 16

|_eaf Procedure Example

MIPS code:

leaf_example:
addi $sp, $sp, -4
SW $s0 , O($Sp) Save $s0 on stack
add $t0, %$a0, %$al
add $tl, $%$a2, $%a3 Procedure body
sub $s0, $tO0, $tl
add $v0, $sO, $zero | Resut
Tlw $s0, 0($sp)
addi $sp, $sp, 4
j I $ra Return

Restore $s0

Chapter 2 — Instructions: Language of the Computer — 17

|_eaf Procedure Example

MIPS code: Calling program:
add $s0, $t0,$tl
jal leaf_example
sub $s0,$s0,$v0

Chapter 2 — Instructions: Language of the Computer — 18

_ocal Data on the Stack

High address

$fp— $fp—

$Sp_“' $5p—-—
$fp—

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

$sp—

Low address
a b C.

L_ocal data allocated by callee

Procedure frame
Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 19

Memory Layout

Text: program code §5p— TEFF £FFCpoy

Stack

Static data: global variables l
e.g., static variables in C, T

constant arrays and strings oynamio e
$gp— 1000 8000,y Static data
. 1000 0000,
Dynamic data: heap “ Text
pc— 0040 0000,
Reserved
Stack 0

Chapter 2 — Instructions: Language of the Computer — 20

Problems to solve

2.12

Note that overflow occurs when the result is
outside the range of value that can be stored in 32
bits(n):
Unsigned operation: Range: 0 to +2" -1
(0 to +4,294,967,295)
Signed operations: Range: —2"-1to+2"-1 -1
(—2,147,483,648 to +2,147,483,647)

2.19, 2.22, 2.23, 2.26, 2.29

Chapter 2 — Instructions: Language of the Computer — 21

