
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 2

Instructions: Language

of the Computer

Chapter 2

◼ Introduction and computer operations

◼ Instruction Operands

◼ Signed and Unsigned numbers

◼ Representing Instructions (Instruction Format)

Chapter 2 — Instructions: Language of the Computer — 2

Chapter 2 — Instructions: Language of the Computer — 3

Instruction Set

◼ The collection of instructions of a computer

◼ Different computers have different instruction
sets

◼ But with many aspects in common

◼ Early computers had very simple instruction
sets

◼ Simplified implementation

◼ Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

RISC vs CISC

Chapter 2 — Instructions: Language of the Computer — 4

CISC RISC

Complex Instruction Set

Computers

Reduced Instruction Set

Computers

Variable length Fixed length

Emphasis on hardware Emphasis on software

Includes multi-clock

complex instructions

Single-clock,

reduced instruction only

Memory-to-memory:

"LOAD" and "STORE"

incorporated in instructions

Register to register:

"LOAD" and "STORE"

are independent instructions

Small code sizes,

high cycles per second

Low cycles per second,

large code sizes

Ex.: Intel x86, AMD Ex.: MIPS,ARM,AVR,SPARC

Chapter 2 — Instructions: Language of the Computer — 5

The MIPS Instruction Set

◼ Used as the example throughout the book

◼ MIPS commercialized by MIPS Technologies

(www.mips.com). Stands for Microprocessor without

Interlocked Pipeline Stages

◼ Large share of embedded core market

◼ Applications in consumer electronics, network/storage

equipment, cameras, printers, …

◼ Typical of many modern ISAs

◼ See MIPS Reference Data and Appendices B and E

http://www.mips.com)/

Categories of MIPS Instructions

• Arithmetic

• Logical

• Data transfer

• Conditional Branch

• Unconditional Jump

Chapter 2 — Instructions: Language of the Computer — 6

Chapter 2 — Instructions: Language of the Computer — 7

Example: MIPS Instructions

◼ add a, b, c # a gets b + c

◼ Three operands: Two sources and one destination

◼ All arithmetic/Logic operations have this form

◼ Design Principle 1: Simplicity favors

regularity

◼ Regularity makes implementation simpler

◼ Simplicity enables higher performance at lower

cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Example: MIPS Instructions

◼ C code:

◼ f = (g + h) - (i + j);

◼ Compiled MIPS code:

◼ add t0, g, h # temp t0 = g + h

add t1, i, j # temp t1 = i + j

sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 8

Instruction Operands

Chapter 2 — Instructions: Language of the Computer — 9

Chapter 2 — Instructions: Language of the Computer — 10

1) Register Operands

◼ Arithmetic instructions use register
operands

◼ MIPS has a 32 × 32-bit register file

◼ Use for frequently accessed data

◼ Numbered 0 to 31

◼ 32-bit data called a “word”

◼ Design Principle 2: Smaller is faster
◼ c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

MIPS Registers

Chapter 2 — Instructions: Language of the Computer — 11

Chapter 2 — Instructions: Language of the Computer — 12

The Constant Zero

◼ MIPS register 0 ($zero) is the constant 0

◼ Cannot be overwritten

◼ Useful for common operations

◼ E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 13

Ex. Arithmetic Instructions

◼ C code:

f = (g + h) - (i + j);

◼ f, g, h, i, j in $s0, $s1, $s2, $s3, $s4

◼ Compiled MIPS code:

add $t0, $s1, $s2

add $t1, $s3, $s4

sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 14

2) Immediate Operands

◼ C code:

f = (g +3) - (i + j);

◼ f, g , , i, j in $s0, $s1, , $s3, $s4

◼ Compiled MIPS code:

addi $t0, $s1, 3

add $t1, $s3, $s4

sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 15

2) Immediate Operands

◼ Constant data specified in an instruction

addi $s3, $s3, 4

◼ No subtract immediate instruction

◼ Just use a negative constant

addi $s2, $s1, -1

◼ Design Principle 3: Make the common case

fast

◼ Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 16

Ex. Logical Instructions

◼ Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

◼ Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Ex. Logical Instructions

Example:

$S0=0000 0000 0000 0000 0000 0000 0000 1001two= 9ten

After instruction:

sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

$t2= 0000 0000 0000 0000 0000 0000 1001 0000two

= 144ten

Chapter 2 — Instructions: Language of the Computer — 17

Chapter 2 — Instructions: Language of the Computer — 18

AND Operations

◼ Useful to mask bits in a word

◼ Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 19

OR Operations

◼ Useful to include bits in a word

◼ Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 20

NOT Operations

◼ Useful to invert bits in a word

◼ Change 0 to 1, and 1 to 0

◼ MIPS has NOR 3-operand instruction

◼ a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always

read as zero

Chapter 2 — Instructions: Language of the Computer — 21

3) Memory Operands

◼ Accessed only by data transfer instructions

◼ Main memory used for composite data
◼ Arrays, structures, dynamic data

◼ To apply arithmetic operations
◼ Load values from memory into registers

◼ Store result from register to memory

◼ Memory is byte addressed
◼ Each address identifies an 8-bit byte

◼ Words are aligned in memory
◼ Address must be a multiple of 4

3) Memory Operands

Chapter 2 — Instructions: Language of the Computer — 22

0000000000000000000000000000000 0 Byte (8bits)

0000000000000000000000000000001 1

0000000000000000000000000000010 2

0000000000000000000000000000011 3

0000000000000000000000000000100 4

.

.

.

Memory

Address (32bit) data

word

Ex. Data Transfer Instructions

Chapter 2 — Instructions: Language of the Computer — 23

Chapter 2 — Instructions: Language of the Computer — 24

Memory Operand Example 1

◼ C code, A is array of integers:

g = h + A[3];

◼ g in $s1, h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 3 requires offset of 12

◼ 4 bytes per word

lw $t0, ?($s3) # load word

offset base register

Memory Operand Example 1

Chapter 2 — Instructions: Language of the Computer — 25

. . .

B

B+1

B+2

B+3

B+4

B+5

B+6

B+7

B+8

B+9

B+10

B+11

B+12

. . .

Base address B ($s3)

A[0]

A[1]

A[2]

A[3]

Offset

Chapter 2 — Instructions: Language of the Computer — 26

Memory Operand Example 1

◼ C code, A is array of integers:

g = h + A[3];

◼ g in $s1, h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 3 requires offset of 12

◼ 4 bytes per word

lw $t0, 12($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 27

Memory Operand Example 2

◼ C code:

A[12] = h + A[8];

◼ h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 28

Registers vs. Memory

◼ Registers are faster to access than memory

◼ Operating on memory data requires loads and
stores

◼ More instructions to be executed

◼ Compiler must use registers for variables as
much as possible

◼ Only spill to memory for less frequently used
variables

◼ Register optimization is important!

Signed and Unsigned numbers

Chapter 2 — Instructions: Language of the Computer — 29

Chapter 2 — Instructions: Language of the Computer — 30

Unsigned Binary Integers

◼ Given an n-bit number

◼ Example

◼ 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e
rs

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx ++++−= −

−

−

−

Chapter 2 — Instructions: Language of the Computer — 31

2s-Complement Signed Integers

◼ Given an n-bit number

◼ Example

◼ 0111 1111 1111 1111 1111 1111 1111 11002

= 0×231 + 1×230 + … + 1×22 +0×21 +0×20

= 2,147,483,64410

◼ 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20 = – 410

◼ Switch the sign bit:

◼ (0) → +ve→ Multiply coefficient by weight

◼ (1)→ -ve→2’s Complement → Multiply coefficient

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx ++++−= −

−

−

−

Chapter 2 — Instructions: Language of the Computer — 33

Sign Extension

◼ Representing a number using more bits

◼ Preserve the numeric value

◼ In MIPS instruction set

◼ addi: extend immediate value

◼ lb, lh: extend loaded byte/halfword

◼ Replicate the sign bit to the left

◼ c.f. unsigned values: extend with 0s

◼ Examples: 8-bit to 16-bit

◼ +2: 0000 0010 => 0000 0000 0000 0010

◼ –2: 1111 1110 => 1111 1111 1111 1110

Problems to solve

◼ 2.1→ 2.5, 2.9,2.10

Chapter 2 — Instructions: Language of the Computer — 34

