
COMPUTER ARCHITECTURE &
ORGANIZATION
Dr. Randa Mohamed

FCIS-Ainshams

University Spring 2021

Level2

WHY

• It’s one of the most interesting courses in the
faculty.

• Give you insight on how the hardware you’re using
works.

• Ties Logic Design with Assembly, Compiler, and
OS, and is at the core of all these sciences.

• It’s also about programming, the best programmer
is one who knows the hardware the best.

WHAT TO LEARN

• Know how your computer works

• Know how assemblers work

• Learn how to design a processor

• Learn about testing your work

BY THE TIME YOU COMPLETE THIS
COURSE YOU WILL BE ABLE TO
ANSWER THE FOLLOWING QUESTIONS

• high-level language → the language of the hardware,

• how does the hardware execute the resulting program?

• understanding the aspects of both the hardware and
software that affect program performance.

• The software/ hardware interface, and how does software
instruct the hardware to perform needed functions?

• What determines the performance of a program, and how
can a programmer improve the performance?

• What techniques can be used by hardware designers to
improve performance?

TEXTBOOK

“Computer Organization and Design” 5th Edition
by David A. Patterson and John L. Hennesy

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=David+Harris&text=David+Harris&sort=relevancerank&search-alias=books

CHAPTERS

Chapters 1 : Computer Abstraction and technology
(1 lecture)

Chapter 2: Instructions: Language of the computer
(2~3 Lectures)

Chapter 4: The processor (4~5 Lectures)

Chapter 5: Exploiting memory hierarchy (1~2
Lectures)

ASSESSMENT / GRADING

Item Percentage

Quizzes/Assignments 5 Marks

Practical Hands-on 10 Marks

Midterm 15 Marks

Practical Exam 20 Marks

Final Exam 50 Marks

LOGISTICS

• Attendance in lectures & labs is mandatory
(your attendance week)

• Studying the videos is mandatory (your
home week)

• Late assignments/ Hands-on are not allowed

• Cheating in anyway is taken seriously

• Excuses for absence in exams should be
officially approved in advance

COMMUNICATION

Lectures, labs and class announcements will be
published on LMS.

Contact e-mail: randa_aboelfatoh@cis.asu.edu.eg

mailto:randa_aboelfatoh@cis.asu.edu.eg

Let’s Start

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 1

Computer Abstractions

and Technology

Dr. Heba Khaled

Edited by: Dr. Randa Mohamed

Chapter 1

◼ Introduction to Computer Architecture

(1.1,1.2)

◼ Below Your Program (Interface between SW

and HW) (1.3,1.4)

◼ Computer Performance (1.6)

◼ Other sections are for your own knowledge and

not included in exam.

Chapter 1 — Computer Abstractions and Technology — 12

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Introduction

Chapter 1 — Computer Abstractions and Technology — 14

The Computer Revolution

◼ Progress in computer technology

◼ Underpinned by Moore’s Law

◼ Makes novel applications feasible

◼ Computers in automobiles

◼ Cell phones

◼ Human genome project

◼ World Wide Web

◼ Search Engines

◼ Computers are pervasive

§
1
.1

 In
tro

d
u
c
tio

n

Chapter 1 — Computer Abstractions and Technology — 15

Classes of Computers

◼ Personal computers

◼ General purpose, variety of software

◼ Subject to cost/performance tradeoff

◼ Server computers

◼ Network based

◼ High capacity, performance, reliability

◼ Range from small servers to building sized

Classes of Computers

◼ Supercomputers

◼ High-end scientific and engineering calculations

◼ Highest capability but represent a small fraction of
the overall computer market

◼ Embedded computers

◼ Hidden as components of systems

◼ Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 16

The PostPC Era

Chapter 1 — Computer Abstractions and Technology — 17

◼ Personal Mobile Device (PMD)

◼ Battery operated

◼ Connects to the Internet

◼ Hundreds of dollars

◼ Smart phones, tablets, electronic glasses

◼ Cloud computing

◼ Warehouse Scale Computers (WSC)

◼ Software as a Service (SaaS)

◼ Portion of software run on a PMD and a portion
run in the Cloud

◼ Amazon and Google

Chapter 1 — Computer Abstractions and Technology — 18

The PostPC Era

Eight Great Ideas

◼ Design for Moore’s Law

◼ Use abstraction to simplify design

◼ Make the common case fast

◼ Performance via parallelism

◼ Performance via pipelining

◼ Performance via prediction

◼ Hierarchy of memories

◼ Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 19

§
1
.2

 E
ig

h
t G

re
a
t Id

e
a
s
 in

 C
o
m

p
u
te

r A
rc

h
ite

c
tu

re

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Below Your Program

Chapter 1 — Computer Abstractions and Technology — 21

Below Your Program

◼ Application software

◼ Written in high-level language

◼ System software

◼ Compiler: translates HLL code to

machine code

◼ Operating System: service code

◼ Handling input/output

◼ Managing memory and storage

◼ Scheduling tasks & sharing resources

◼ Hardware

◼ Processor, memory, I/O controllers

§
1
.3

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 22

Below Your Program

◼ High-level language

◼ Level of abstraction closer to
problem domain

◼ Provides for productivity and
portability

◼ Assembly language

◼ Textual representation of
instructions

◼ Hardware representation

◼ Binary digits (bits)

◼ Encoded instructions and data

Instruction set Architecture

◼ Is the programmer’s view of a

computer.

◼ It is defined by the instruction set

(language) and operand locations

(registers and memory).

◼ Many different architectures exist,

such as x86, MIPS, SPARC, ARM,

and PowerPC.

◼ Can be implemented by different

companies (ARM architecture is

implemented by TI, NXP, Freescale).
Chapter 1 — Computer Abstractions and Technology — 23

Instruction set Architecture

◼ Is the programmer’s view of a

computer.

◼ It is defined by the instruction set

(language) and operand locations

(registers and memory).

◼ Many different architectures exist,

such as x86, MIPS, SPARC, ARM,

and PowerPC.

◼ Can be implemented by different

companies (ARM architecture is

implemented by TI, NXP, Freescale).
Chapter 1 — Computer Abstractions and Technology — 24

Application binary interface

Chapter 1 — Computer Abstractions and Technology — 25

Components of a Computer (Architecture)

§
1
.4

 U
n
d
e
r th

e
 C

o
v
e
rs

The BIG Picture

Chapter 1 — Computer Abstractions and Technology — 26

Components of a Computer (Architecture)

§
1
.4

 U
n
d
e
r th

e
 C

o
v
e
rs

The BIG Picture

• User-interface devices

• Storage devices

• Network Adaptors

Chapter 1 — Computer Abstractions and Technology — 27

Processor (CPU)

◼ Datapath: performs operations on data

◼ Control: sequences datapath, memory, I/O

devices.

Chapter 1 — Computer Abstractions and Technology — 28

Memory

◼ Main memory/primary memory: Memory used to

hold programs while they are running. Typically

consists of DRAM.

◼ Secondary memory Nonvolatile: Memory used to

store programs and data between runs; typically

consists of flash memory in PMDs and magnetic disks

in servers.

◼ Cache memory: Consists of a small, fast memory

that acts as a buffer for the DRAM memory. Cache is

built using a different memory technology, static

random access memory (SRAM). SRAM is faster but

less dense, and hence more expensive, than DRAM.

Chapter 1 — Computer Abstractions and Technology — 29

Opening the Box (Apple iPad2)

Capacitive multitouch LCD screen

3.8 V, 25 Watt-hour battery

Computer board

Chapter 1 — Computer Abstractions and Technology — 30

Inside the Processor

◼ Apple A5

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Performance

Chapter 1 — Computer Abstractions and Technology — 32

Defining Performance

◼ Which airplane has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

§
1
.6

 P
e
rfo

rm
a
n
c
e

Chapter 1 — Computer Abstractions and Technology — 33

Understanding Performance

◼ Algorithm

◼ Determines number of operations executed

◼ Programming language, compiler, architecture

◼ Determine number of machine instructions executed per

operation

◼ Processor and memory system

◼ Determine how fast instructions are executed

◼ I/O system (including OS)

◼ Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 34

Response Time and Throughput

◼ Response time

◼ How long it takes to do a task

◼ Throughput

◼ Total work done per unit time

◼ e.g., tasks/transactions/… per hour

◼ How are response time and throughput affected by

◼ Replacing the processor with a faster version?

◼ Adding more processors?

◼ We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 35

Relative Performance

◼ Define Performance = 1/Execution Time

◼ To compare the performance of two machines

(or CPUs) “A”, “B” running a given specific

program (A is n times faster than B)

Speedup =n =
𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞

𝐀

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞
𝐁

=
𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐓𝐢𝐦𝐞𝐁

𝐄𝐱𝐞𝐜𝐮𝐭𝐢𝐨𝐧 𝐓𝐢𝐦𝐞
𝐀

Chapter 1 — Computer Abstractions and Technology — 36

Relative Performance

Example: For a given program:

Execution time on machine A: ExecutionA= 10 second

Execution time on machine B: ExecutionB= 15 seconds

◼ Speedup= PerformanceA/ PerformanceB=

Execution TimeB /Execution TimeA=15 /10 = 1.5

◼ The performance of machine A is 1.5 times the

performance of machine B when running this

program, or Machine A is said to be 1.5 times

faster than machine B when running this

program

Chapter 1 — Computer Abstractions and Technology — 37

Measuring Execution Time

◼ Elapsed time

◼ Total response time, including all aspects

◼ Processing, I/O, OS overhead, idle time

◼ Determines system performance

◼ CPU time

◼ Time spent processing a given job

◼ Discounts I/O time, other jobs’ shares

◼ Comprises user CPU time and system CPU time

◼ Different programs are affected differently by CPU
and system performance

Chapter 1 — Computer Abstractions and Technology — 39

CPU Clocking
◼ Operation of digital hardware governed by a constant-

rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

◼ Clock period: duration of a clock cycle

◼ e.g., 250ps = 0.25ns = 250×10–12s

◼ Clock frequency (rate): cycles per

second

◼ e.g., 4.0GHz = 4000MHz =

4.0×109Hz

• Clock cycle time/period (T):
– time for a complete clock cycle
– time between ticks
– seconds per cycle

• Clock rate/frequency (R):

– the inverse of the clock period, i.e.,
– cycles per second T
R = 1

Chapter 1 — Computer Abstractions and Technology — 40

CPU Time

◼ Performance improved by

◼ Reducing number of clock cycles

◼ Increasing clock rate

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

◼ Our favorite program runs in 10 seconds on computer A, which

has a 2 GHz clock. We are trying to help a computer designer

build a computer, B, which will run this program in 6 seconds.

Thee designer has determined that a substantial increase in the

clock rate is possible, but this increase will affect the rest of the

CPU design, causing computer B to require 1.2 times as many

clock cycles as computer A for this program. What clock rate

should we tell the designer to target?

◼ To run the program in 6 seconds, B must have twice the clock

rate of A.

Chapter 1 — Computer Abstractions and Technology — 41

Chapter 1 — Computer Abstractions and Technology — 42

CPU Time Example

◼ Computer A: 2GHz clock, 10s CPU time

◼ Designing Computer B

◼ Aim for 6s CPU time

◼ Can do faster clock, but causes 1.2 × clock cycles

◼ How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B

=

=

=

==

=

==

Chapter 1 — Computer Abstractions and Technology — 43

Instruction Count and CPI

◼ Instruction Count for a program

◼ Determined by program, ISA and compiler

◼ Average cycles per instruction

◼ Determined by CPU hardware

◼ If different instructions have different CPI

◼ Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

=

=

=

Static and Dynamic Instruction Count

◼ Static instruction count is the number of instructions the program

has

◼ Dynamic instruction count is the actual number of instructions

executed by the CPU for a specific program execution

◼ We usually use dynamic instruction count as if, for example, you

have a loop in your program then some instructions get executed

more than once

◼ Also, in the presence of branches, some instructions may not be

executed at all

Chapter 1 — Computer Abstractions and Technology — 44

◼ Suppose we have two implementations of the

same instruction set architecture.

◼ Computer A has a clock cycle time of 250 ps

and a CPI of 2.0 for some program, and

computer B has a clock cycle time of 500 ps

and a CPI of 1.2 for the same program.

◼ Which computer is faster for this program and

by how much?

Chapter 1 — Computer Abstractions and Technology — 45

Chapter 1 — Computer Abstractions and Technology — 46

CPI Example

◼ Computer A: Cycle Time = 250ps, CPI = 2.0

◼ Computer B: Cycle Time = 500ps, CPI = 1.2

◼ Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=

=

==

=

==

=

A is faster…

…by this much

CPI in More Detail

◼ Different instructions take different amounts of time depending on

what they do:

◼ Multiplication takes more time than addition

◼ Floating-point operations take longer than integer ones

◼ Accessing memory takes more time than accessing registers

◼ Instructions can be divided into classes of similar instructions

◼ Instructions in the same class have the same Clock cycles Per

Instruction (CPI) value

Chapter 1 — Computer Abstractions and Technology — 47

CPI in More Detail (cont.)

◼ Total CPU clock cycles for a certain program can be calculated

by looking at various instruction classes and their individual

CPIs

◼ If different instruction classes take different numbers of cycles

◼ – CPIi is the clock cycles per instruction for class i (integer number),

◼ – Ci is the count of instructions executed from class i, and

◼ – n is the number of instruction classes

Chapter 1 — Computer Abstractions and Technology — 48

=

=
n

1i

ii)Count nInstructio(CPICycles Clock

Chapter 1 — Computer Abstractions and Technology — 49

CPI in More Detail
• Average CPI (CPIaverage or just CPI) for a certain program is the

average number of clock cycles each instruction takes to execute

Relative frequency

• C is the number of instructions executed by the program (known as the
instruction count, instruction path length, or dynamic program size)

• let the fraction of occurrence (relative frequency) of an instruction class

in a program be

• Thus, CPI depends on the instruction mix (the dynamic
frequency of instructions across the program)

Chapter 1 — Computer Abstractions and Technology — 50

CPI Example

◼ Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

◼ Sequence 1: IC = 5

◼ Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

◼ Avg. CPI = 10/5 = 2.0

◼ Sequence 2: IC = 6

◼ Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

◼ Avg. CPI = 9/6 = 1.5

Instructions Per Clock Cycle

◼ CPI provides one way of comparing two different

implementations of the same ISA, since the number of

instructions executed for a program will be the same

◼ Although we might expect that the minimum CPI is 1.0, some

processors fetch and execute multiple instructions per clock

cycle (e.g., multicore microprocessors as will be shown later)

◼ We could invert CPI to talk about IPC, or instructions per

clock cycle

Chapter 1 — Computer Abstractions and Technology — 51

The CPU Performance Equation

Chapter 1 — Computer Abstractions and Technology — 52

Chapter 1 — Computer Abstractions and Technology — 53

Performance Summary

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =

Problems to Solve

◼ 1.5, 1.6,1.7

◼ Note that E9 for example means 10^9.

Chapter 1 — Computer Abstractions and Technology — 69

Thank you

Chapter 1 — Computer Abstractions and Technology — 70

