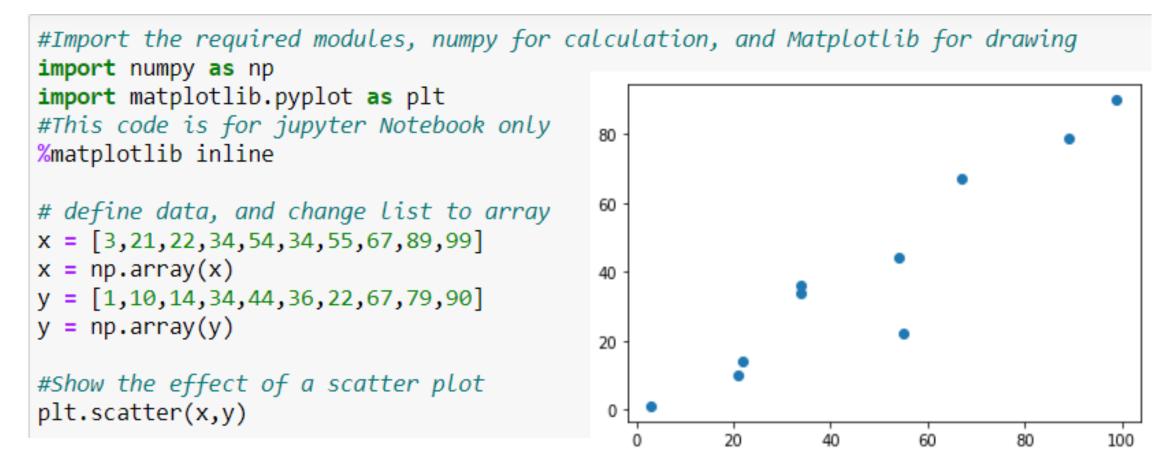
Lab 6 – Machine Learning Algorithms

Contents

- **1. Linear Regression**
- 2. Decision Trees

• Data Preparation

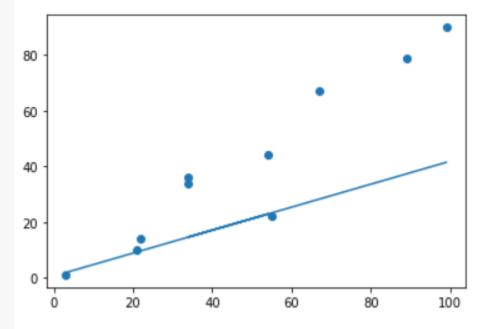


```
#The basic linear regression model is wx + b, and since this is a two-dimensional space, the model is ax + b
def model(a, b, x):
    return a*x + b
#The most commonly used loss function of linear regression model is the loss function of mean variance difference
def loss function(a, b, x, y):
    num = len(x)
    prediction=model(a,b,x)
    return (0.5/num) * (np.square(prediction-y)).sum()
#The optimization function mainly USES partial derivatives to update two parameters a and b
def optimize(a,b,x,y):
    num = len(x)
    prediction = model(a,b,x)
    #Update the values of A and B by finding the partial derivatives of the loss function on a and b
    da = (1.0/\text{num}) * ((\text{prediction } -y)*x).sum()
    db = (1.0/num) * ((prediction -y).sum())
    a = a - Lr^*da
    b = b - Lr^*db
   return a, b
#iterated function, return a and b
def iterate(a,b,x,y,times):
    for i in range(times):
        a,b = optimize(a,b,x,y)
    return a,b
```

• Start the Iteration

Step1: Initialization and Iterative optimization model

```
#Initialize parameters and display
a = np.random.rand(1)
print(a)
b = np.random.rand(1)
print(b)
Lr = 1e-4
#For the first iteration, the parameter values, losses,
#and visualization after the iteration are displayed
a,b = iterate(a,b,x,y,1)
prediction=model(a,b,x)
loss = loss_function(a, b, x, y)
print(a,b,loss)
plt.scatter(x,y)
plt.plot(x,prediction)
```

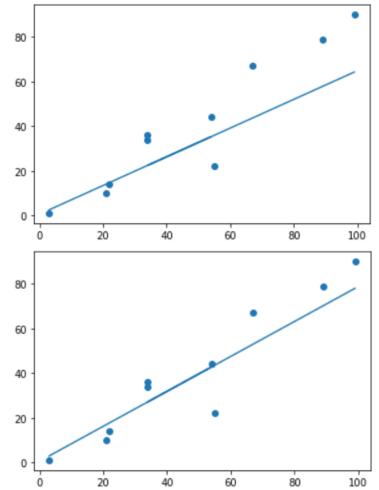


Step2: In the second iteration, the parameter values, loss values and visualization effects after the iteration are displayed

```
a,b = iterate(a,b,x,y,2)
prediction=model(a,b,x)
loss = loss_function(a, b, x, y)
print(a,b,loss)
plt.scatter(x,y)
plt.plot(x,prediction)
```

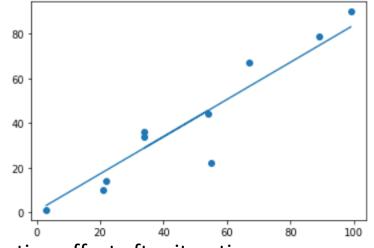
Step 3: The third iteration shows the parameter values, loss values and visualization after iteration

```
a,b = iterate(a,b,x,y,3)
prediction=model(a,b,x)
loss = loss_function(a, b, x, y)
print(a,b,loss)
plt.scatter(x,y)
plt.plot(x,prediction)
```



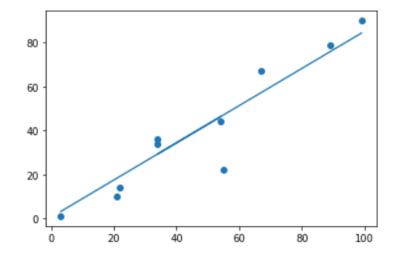
Step 4: In the fourth iteration, parameter values, loss values and visualization effects are displayed

```
a,b = iterate(a,b,x,y,4)
prediction=model(a,b,x)
loss = loss_function(a, b, x, y)
print(a,b,loss)
plt.scatter(x,y)
plt.plot(x,prediction)
```



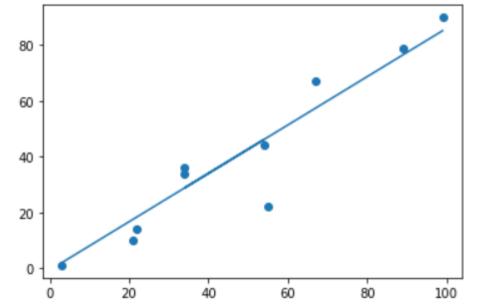
Step 5: The fifth iteration shows the parameter value, loss value and visualization effect after iteration

```
a,b = iterate(a,b,x,y,5)
prediction=model(a,b,x)
loss = loss_function(a, b, x, y)
print(a,b,loss)
plt.scatter(x,y)
plt.plot(x,prediction)
```



Step 6: The 10000th iteration, showing the parameter values, losses and visualization after iteration

```
a,b = iterate(a,b,x,y,10000)
prediction=model(a,b,x)
loss = loss_function(a, b, x, y)
print(a,b,loss)
plt.scatter(x,y)
plt.plot(x,prediction)
```



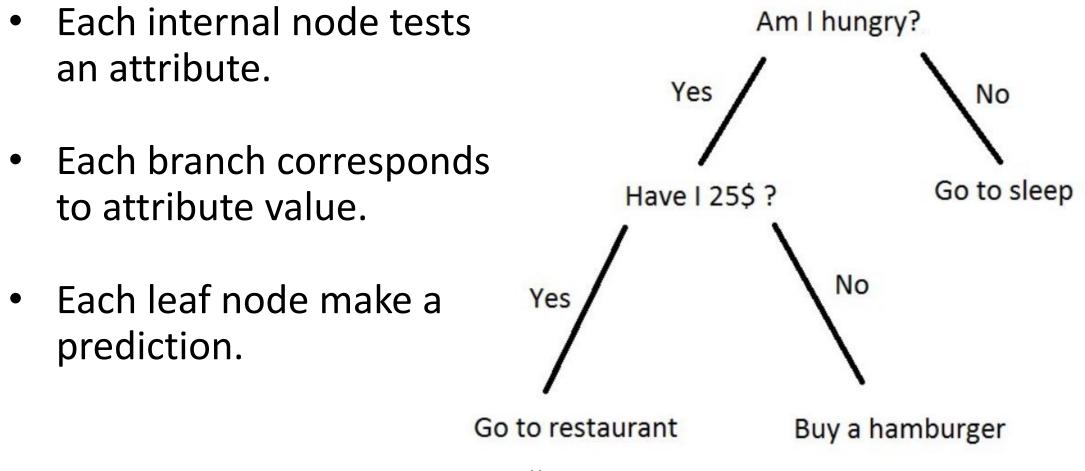
Contents

- 1. Linear Regression
- **2.** Decision Trees

Decision Trees

- The idea is to partition input space into a disjoint set of regions and to use a very simple predictor for each region.
- For classification simply predict the most frequent class in the region

Decision Trees Representation



Decision Trees

The strengths of decision tree methods are:

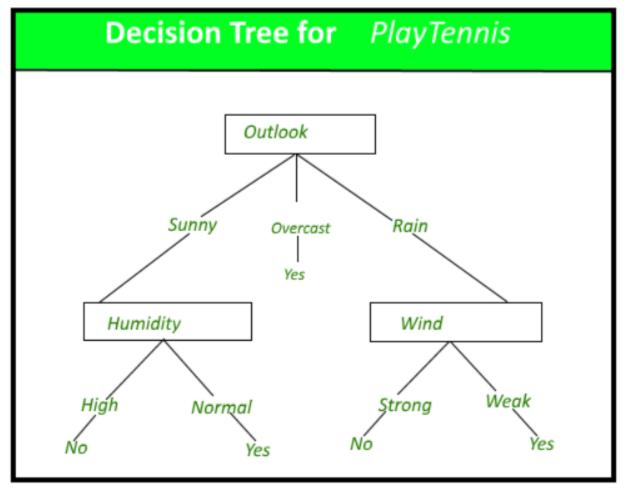
- Decision trees are able to generate **understandable rules**.
- Decision trees perform classification without requiring much computation.
- Decision trees are able to handle both continuous and categorical variables.
- Decision trees provide a clear indication of which fields are most important for prediction or classification.

Decision Trees

The weaknesses of decision tree methods are:

- Decision trees are less appropriate for estimation tasks where the goal is to predict the value of a continuous attribute.
- Decision trees are prone to errors in classification problems with many classes and relatively small number of training examples.
- Decision tree can be **computationally expensive to train**.

Play tennis training data



Play tennis training data

- Hard to guess.
- Divide & Conquer:
 - split into subsets
 - are they pure? (all yes or all no)
 - if yes: stop.
 - If no: repeat.
- See which subset new data falls into

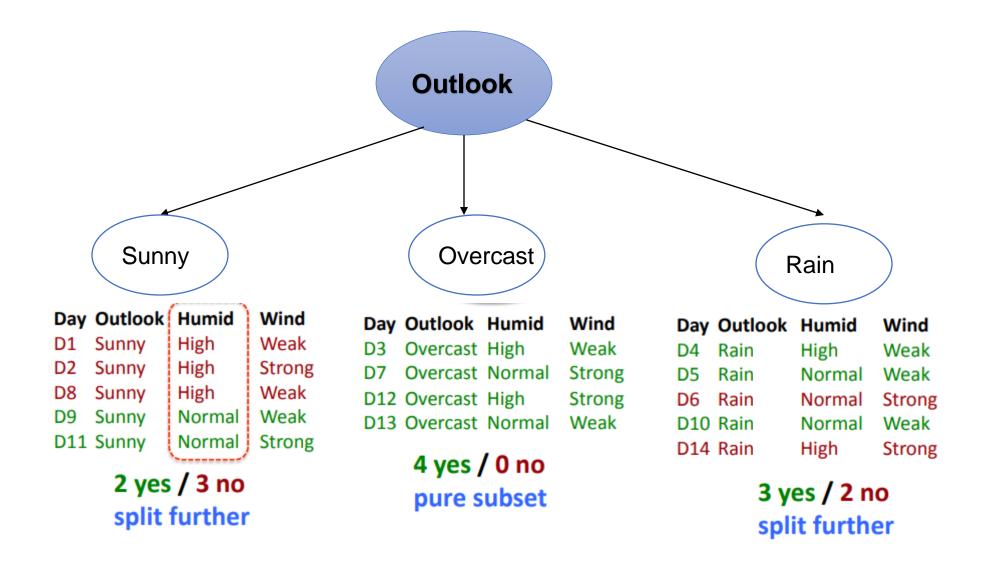
Training examples:		9 yes / 5 no	1	
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Actistrong Go to Settings to	do <mark>Nõ</mark> activate W

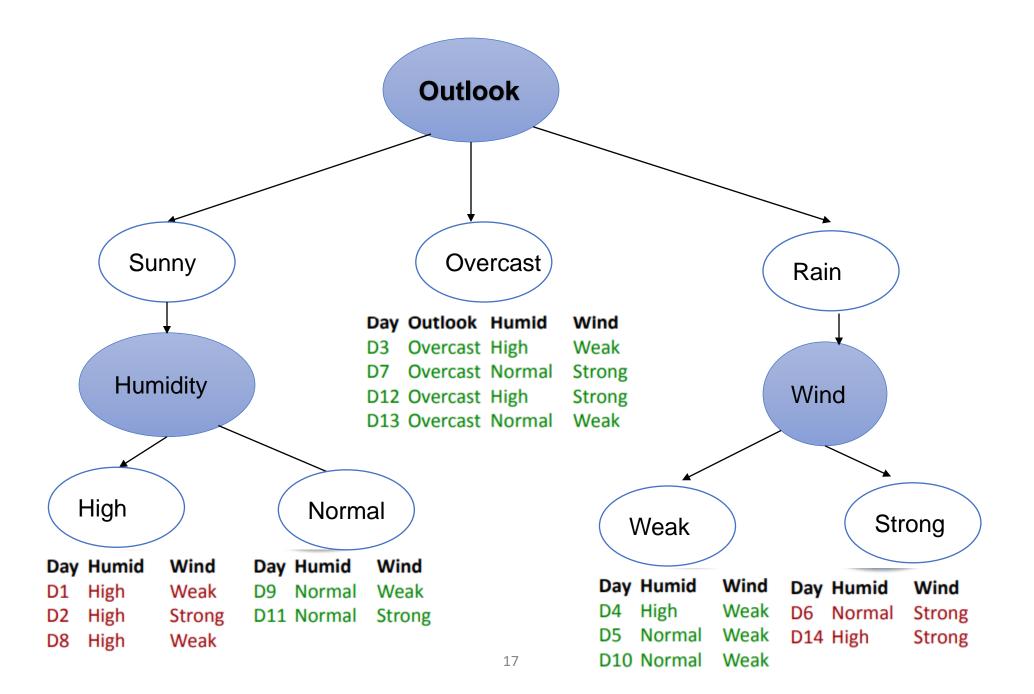
New Data

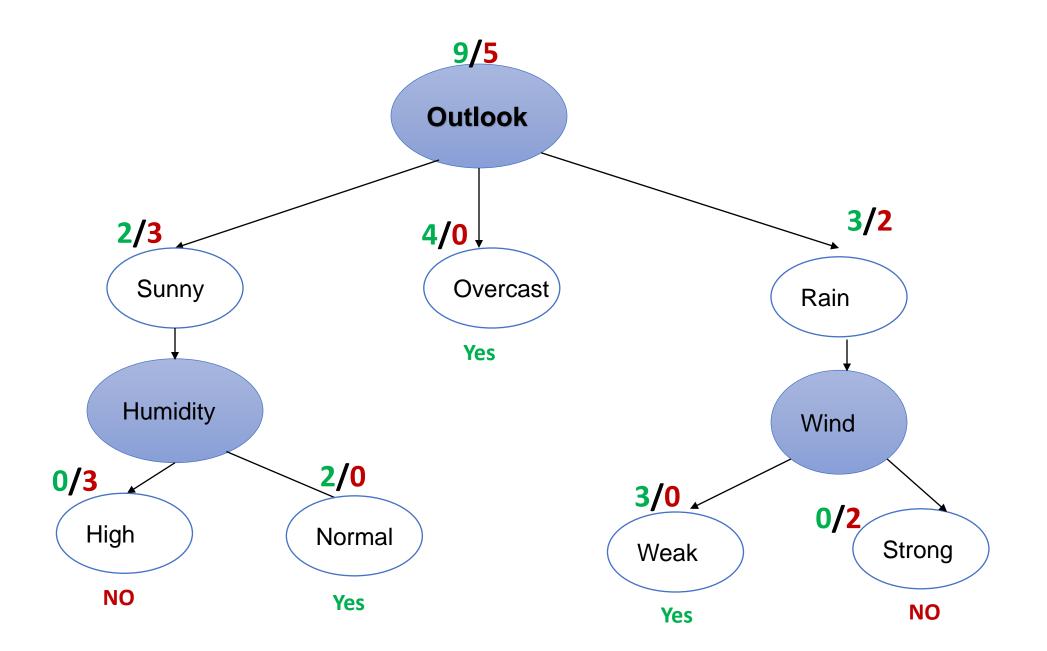
D15 Rain

High

weak ?







Which attribute to split on

- Want to measure "purity" of the split
 - more certain about Yes/No after the split
 - pure set (4 yes / 0 no) => completely certain (100%)
 - impure (3 yes / 3 no) => completely uncertain (50%)
 - can't use P("yes" | set):
 - must be symmetric: 4 yes / 0 no as pure as 0 yes / 4 no

Activate Windows

How Does a Decision Tree Select Splits?

- The ID3 decision makes use of two concepts when creating a tree from top-down:
 - Entropy
 - **Information Gain** (as referred to as just **gain**)
- Using these two concepts, the nodes to be created and the attributes to split on can be determined.
- Gain measures how well a given attribute separates training examples into targeted classes. The one with the highest information (information being the most useful for classification) is selected.
- In order to define gain, we first borrow an idea from information theory called entropy. **Entropy** measures the amount of information in an attribute.

Entropy

• Entropy: $H(S) = -p_{(+)} \log_2 p_{(+)} - p_{(-)} \log_2 p_{(-)}$ bits

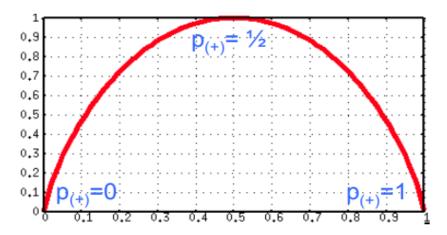
– S ... subset of training examples

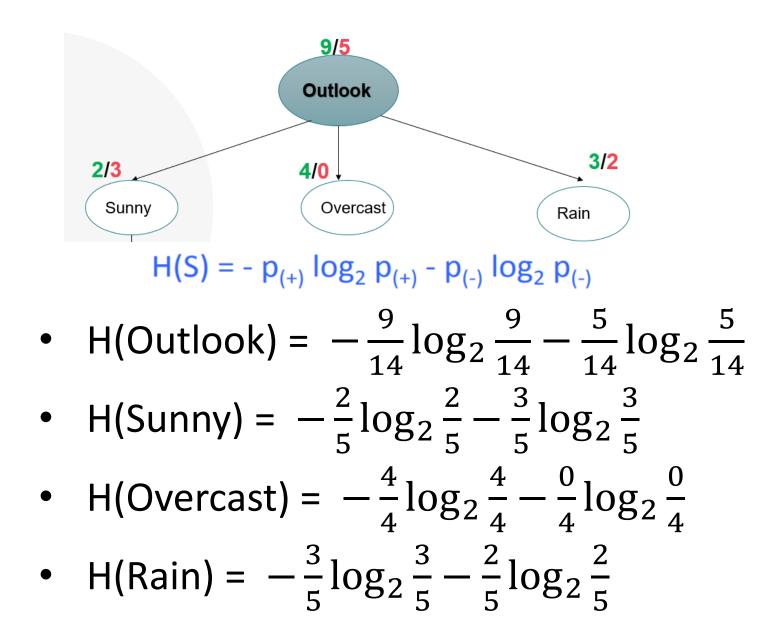
 $-p_{(+)} / p_{(-)} \dots$ % of positive / negative examples in S

Interpretation: assume item X belongs to S

how many bits need to tell if X positive or negative

- impure (3 yes / 3 no): $H(S) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1 \text{ bits}$
- pure set (4 yes / 0 no): $H(S) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0 \text{ bits}$





Information Gain

- Information Gain (also known as just Gain) uses the entropy in order to determine what attribute is best used to create a split with.
- The column with the higher Gain will be used as the node of the decision tree.

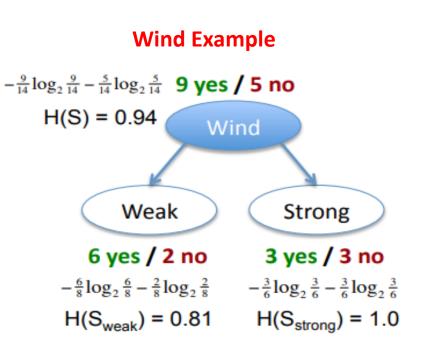
Information Gain

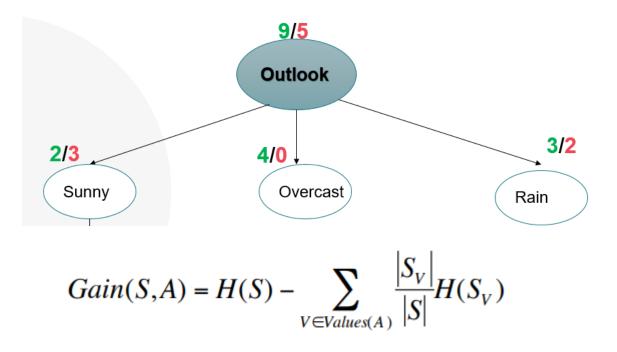
- Want many items in pure sets.
- Expected drop in entropy after split:

$$Gain(S,A) = H(S) - \sum_{V \in Values(A)} \frac{|S_V|}{|S|} H(S_V)$$

Gain (S, Wind)
= H(S) - ⁸/₁₄ H(S_{weak}) - ⁶/₁₄ H(S_{strong})
= 0.94 - ⁸/₁₄ * 0.81 - ⁶/₁₄ * 1.0
= 0.049

V ... possible values of A S ... set of examples {X} S_v ... subset where $X_A = V$



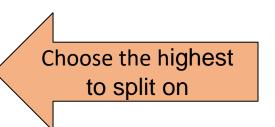


- H(Outlook) = $-\frac{9}{14}\log_2\frac{9}{14} \frac{5}{14}\log_2\frac{5}{14}$
- Gain(Outlook) = H(Outlook) $\sum_{v \in Outlook} \frac{S_v}{S} H(Sv)$
- Gain(Outlook) = H(Outlook) $\left(\frac{5}{14} \text{ H(Sunny)} + \frac{4}{14} \text{ H(Overcast)} + \frac{5}{14} \text{ H(Rain)}\right)$

Similarly,

Note: Highest gain is always selected.

Gain(Humidity)=0.151 Gain(Outlook)=0.246 Gain(Wind)=0.048



ID3 Algorithm

- Split (node, {examples}):
 - 1. A \leftarrow the best attribute for splitting the {examples}
 - 2. Decision attribute for this node \leftarrow A
 - 3. For each value of A, create new child node
 - 4. Split training {examples} to child nodes
 - If examples perfectly classified: STOP else: iterate over new child nodes Split (child_node, {subset of examples})

	1. Create a root node
Entropy The file is in the Manual The file is in the file is in the Manual The file is in the file is in the Manual The file is in the file is in the Manual The file is in the file is in the Manual The file is in the file is in the file	2. Calculate the entro
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3. Calculate the Inforr feature and pick that Information gain
True False	4. Assign the (root) no maximum information an outgoing branch an
Legs Inne Legs F	
toothed her broathes legs species toothed her broathes	Dira Partia
	For Replace informati
3 Fabe Tree Tree Tree Vermal 7 Tree Fabe Tree	Russe dataset
4 Toue Toue Toue Toue Toue Manonal 5 Ince Toue Ince (Aug Vennual	
S True True True (php Vennual B True True True 700) Vennual	
9 Pate False True True Reptie	
First sub tree	6. For eac
Second sub tree	28 2 to 5 un recursion

ropy of the whole (sub) dataset

rmation gain of each single t feature with the larges

node the label of the feature with the on gain. Grow for each feature value and add unlabelled nodes at the end

> the dataset along the values of the maximum ation gain feature and remove this feature from the

ach of the sub_datasets, repeat steps intil a stopping criteria is satisfied ightarrowHere the recursion kicks in

Thanks