
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5th

Edition

Chapter 4

The Processor

Dr. Randa Mohamed

Agenda

◼ MIPS Pipeline:

◼ Hazards

◼ Structural Hazards

◼ Data Hazards

Chapter 4 — The Processor — 2

Chapter 4 — The Processor — 3

Hazards

◼ Situations that prevent starting the next
instruction in the next cycle

◼ Structural hazard

◼ A required resource is busy

◼ Data hazard

◼ Need to wait for previous instruction to
complete its data read/write

◼ Control hazard

◼ Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 4

Structural Hazards

◼ Conflict for use of a resource

◼ In MIPS pipeline with a single memory

◼ Load/store requires data access

◼ Instruction fetch would have to stall for that

cycle

◼ Hence, pipelined datapaths require

separate instruction/data memories

Chapter 4 — The Processor — 5

Data Hazards

◼ An instruction depends on completion of

data access by a previous instruction

◼ add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 6

Data Hazards

◼ An instruction depends on completion of

data access by a previous instruction

◼ add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 7

Forwarding (aka Bypassing)

◼ Use result when it is computed

◼ Don’t wait for it to be stored in a register

◼ Requires extra connections in the datapath

Chapter 4 — The Processor — 8

Load-Use Data Hazard

◼ Can’t always avoid stalls by forwarding

◼ If value not computed when needed

◼ Can’t forward backward in time!

X

Chapter 4 — The Processor — 9

Load-Use Data Hazard

◼ Can’t always avoid stalls by forwarding

◼ If value not computed when needed

◼ Can’t forward backward in time!

Chapter 4 — The Processor — 10

Code Scheduling to Avoid Stalls

◼ Reorder code to avoid use of load result in

the next instruction

◼ C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

t0 B t1

t0+4 E t2

t0+8 F t4

t0+12 A t3

t0+16 C t5

Chapter 4 — The Processor — 11

Data Hazards in ALU Instructions

◼ Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

◼ We can resolve hazards with forwarding

◼ How do we detect when to forward?

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

Chapter 4 — The Processor — 12

Dependencies & Forwarding

Chapter 4 — The Processor — 13

Remember: Pipelined Datapath

Chapter 4 — The Processor — 14

Remember: Pipelined Datapath

Cycle #3

OR AND SUB

Chapter 4 — The Processor — 15

Cycle #4

OR AND SUB

What to forward?

When to forward?

Remember: Pipelined Datapath

Chapter 4 — The Processor — 16

Cycle #5

OR AND SUB

What to forward?

When to forward?

Remember: Pipelined Datapath

Chapter 4 — The Processor — 17

Detecting the Need to Forward

◼ Pass register numbers along pipeline
◼ e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

◼ ALU operand register numbers in EX stage
are given by
◼ ID/EX.RegisterRs, ID/EX.RegisterRt

◼ Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

Chapter 4 — The Processor — 18

Detecting the Need to Forward

◼ But only if forwarding instruction will write

to a register!

◼ EX/MEM.RegWrite, MEM/WB.RegWrite

◼ And only if Rd for that instruction is not

$zero

◼ EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 19

Forwarding Paths

Chapter 4 — The Processor — 20

Forwarding Paths

Chapter 4 — The Processor — 21

Forwarding Conditions

◼ EX hazard

◼ if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

◼ if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

◼ MEM hazard

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Chapter 4 — The Processor — 22

Double Data Hazard

◼ Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

◼ Both hazards occur

◼ Want to use the most recent

◼ Revise MEM hazard condition

◼ Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 23

Revised Forwarding Condition

◼ MEM hazard

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

◼ if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Chapter 4 — The Processor — 24

Datapath with Forwarding

Chapter 4 — The Processor — 25

Load-Use Data Hazard

Need to stall

for one cycle

Chapter 4 — The Processor — 26

Load-Use Hazard Detection

◼ Check when using instruction is decoded
in ID stage

◼ ALU operand register numbers in ID stage
are given by

◼ IF/ID.RegisterRs, IF/ID.RegisterRt

◼ Load-use hazard when

◼ ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

◼ If detected, stall and insert bubble

Chapter 4 — The Processor — 28

Stall/Bubble in the Pipeline

Or, more

accurately…

Stall inserted

here

Chapter 4 — The Processor — 29

How to Stall the Pipeline

◼ Force control values in ID/EX register

to 0

◼ EX, MEM and WB do nop (no-operation)

◼ Prevent update of PC and IF/ID register

◼ Using instruction is decoded again

◼ Following instruction is fetched again

◼ 1-cycle stall allows MEM to read data for lw

◼ Can subsequently forward to EX stage

Chapter 4 — The Processor — 30

Datapath with Hazard Detection

Chapter 4 — The Processor — 31

Stalls and Performance

◼ Stalls reduce performance

◼ But are required to get correct results

◼ Compiler can arrange code to avoid

hazards and stalls

◼ Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 32

Concluding Remarks

◼ Data hazards exist when an instruction depends

on result of previous instruction or the one

before.

◼ Data hazards can be solved using forwarding or

forwarding combined with stall.

1. Forwarding is implemented using forwarding

unit for two situations:

◼ EX hazard: forward result from EX stage in previous cycle to EX

stage (pipeline registers needed: EX/MEM and ID/EX)

◼ MEM hazard: forward result from MEM stage in previous cycle to

EX stage (pipeline registers needed: MEM/WB and ID/EX)

2. Stall is implemented using hazard detection

unit.

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Problems to Solve

◼ 4.9 (note that “With ALU-ALU Forwarding

Only” means EX hazard only)

◼ 4.12, 4.13

Chapter 4 — The Processor — 33

