COMPUTER ORGANIZATION AND DESIGN 5th

The Hardware/Software Interface =dition

Chapter 4

The Processor

Dr. Randa Mohamed

Agenda

MIPS Pipeline:

= Hazards
Structural Hazards
Data Hazards

Chapter 4 — The Processor — 2

Hazards

Situations that prevent starting the next
Instruction in the next cycle

Structural hazard
A required resource Is busy
Data hazard

Need to wait for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 3

Structural Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access

Instruction fetch would have to stall for that
cycle

Hence, pipelined datapaths require
separate Instruction/data memories

Chapter 4 — The Processor — 4

Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $t0, $tl
sub $t2, $s0, $t3

Time 200 400 600 800 1000 1200 1400 1600
add $s0, $t0, $t1 | IF —= 1D >EX——MEM WB |
sub $t2, $s0, $t3 IF % 1D SEX MEM WB :

Chapter 4 — The Processor — 5

Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $t0, $tl
sub $t2, $s0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I I >

add $s0, $t0, $t1 | IF —= 1D %—MEM WB |
bubble bubble bubble bubble bubble
@ @ O @ O
bubble bubble) (" bubble bubble,) (bubble
9 O @ O O

sub $t2, $s0, $t3 IF —E ID %*MEM WBE

Chapter 4 — The Processor — 6

Forwarding (aka Bypassing)

Use result when it iIs computed
Don’t walit for it to be stored in a register
Requires extra connections in the datapath

Program
execution . 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3

Chapter 4 — The Processor — 7

Load-Use Data Hazard

Can't always avoid stalls by forwarding
If value not computed when needed
Can't forward backward in time!

Ti 200 400 600 800 1000 1200 1400 1600
ime | T | T | T T ™

Iw $s0, 20(5t1) IF

sub $t2, $s0, $t3

Chapter 4 — The Processor — 8

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program
execution . 200 400 600 800 1000 1200 1400
order Time : : : ; . : .
(in instructions)

w $s0, 20($t1) IF

sub $t2, $s0, $t3

Chapter 4 — The Processor — 9

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in
the next instruction

CcodeforA = B + E; C = B + F;

tl
t2

t4 Tw $t1, 0($t0) Tw $t1, 0($t0)

3 -”V{‘I!’\ééﬁzgil'» Tw

© | , add $t3, $t1;(5t2) Iw
stall sw $t3, 12($t0) add $t3

Tw (!!) 8($t0) sw $t3, J
stall |— add $t5, $t1, add $t5, $tl,
sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles

t0
t0+4
t0+8
t0+12
t0+16

Of(>[(M|[{mM|

Chapter 4 — The Processor — 10

Data Hazards in ALU Instructions

Consider this seguence:
sub , $1,93
and $12,%2,9%5
or $13, %6,
add $14,%2,
sw $15,100(52)

We can resolve hazards with forwarding
How do we detect when to forward?

Chapter 4 — The Processor — 11

Dependencies & Forwarding

Time (in clock cycles) >
Value of CC1 cC2 CC3 CC4 CC5 CCe6 CC7 cCs8 CcC9
register $2: 10 10 10 10 10/-20 —20 =20 —20 -20

Program
execution
order

(in instructions) =

Iy Wl
sub $2, $1, $3 IM Reg -\ 11DM— Regjl

and $12, $2, $5 IM — —QReﬁ

L.

or $13, $6, $2 IM —Ee_gjl
-1
add $14, $2,52 oM —Eegl
—1
— |
y sw$15, 100($2) »; DM Reg

Chapter 4 — The Processor — 12

MORGAN KAUFMANN

Remember: Pipelined Datapath

A J

Add

Address

Instruction
memory

IFID

MEM/WB

ID/EX EX/MEM
Shift result
left 2
c
£ |Read
2 = | register 1 Read
‘@' data 1
= Read > =
register 2
I> Registers gaaq > o>
o | Write data 2
= | register
Write
data

Address

Write
data

Data
memory

Read
data

\

Sign-
extend

M<

Chapter 4 — The Processor — 13

MORGAN KAUFMANN

Remember: Pipelined Datapath

Cycle #3
OR AND SUB

‘ IFID ID/EX EX/MEM MEM/WB
Add >
Add

A J

0
M c
u Address % . |Read
* 2 " | register 1 Read >
! B data 1
= Read _
Instruction _ | register2 > e
memory >) Registers gaaq N > Adress Rea L,
5 | Write data 2 > B
" | register Dot
L P memory
data
- o | Write
o 7| data
16 Sign- 32 >
Ld extend

Chapter 4 — The Processor — 14

Remember: Pipelined Datapath

What to forward? Cycle #4
When to forward? OR AND SUB

‘ Qo IDEX
B]
Shift
le

|E
z
m
|g
=
m

Read
F@—> Address data [
Data
memory
| Write
7| data

Chapter 4 — The Processor — 15

Remember: Pipelined Datapath

What to forward? Cycle #5
When to forward? OR AND SUB

‘ Qo IDEX
B]
Shift
le

|E
z
m
|g
=
m

Read
F@—> Address data [
Data
memory
| Write
7| data

Chapter 4 — The Processor — 16

Detecting the Need to Forward

Pass register numbers along pipeline

e.g., ID/IEX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

ALU operand register numbers in EX stage

are given by
ID/EX.ReqisterRs, ID/EX.RegisterRt

Data hazards when .
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt _
MEM/WB.RegisterRd = ID/EX.RegisterRs

Fwd from
EX/MEM
pipeline reg

MEM/WB.RegisterRd = ID/EX.RegisterRt |

Fwd from

~ | MEM/WB

pipeline reg

Chapter 4 — The Processor — 17

Detecting the Need to Forward

But only Iif forwarding instruction will write
to a register!

EX/MEM.RegWrite, MEM/WB.RegWrite

And only If Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0O,
MEM/WB.RegisterRd # 0

Chapter 4 — The Processor — 18

Forwarding Paths

ID/EX EX/MEM MEM/WB
N ~(m
> U >
- .
R
—| -
i ForwardA
Registers ALU >
— > >
R - Data . .
: - memory

’—~(><=§)
\ i
\

ForwardB

Rs
Rt _
Bt
Rd

EX/MEM.RegisterRd

L

Yy

xcZ)

> Forwarding \ |

-t

:\\ unit -

MEM/WB.RegisterRd

b. With forwarding

/Z\ M(Chapter 4 — The Processor — 19

MORGAN KAUFMANN

Forwarding Paths
B Moxconwor | Sowee | oplanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

I e

Y
\

ForwardB

.
-

Rs
Rt _
Bt
Rd

EX/MEM.RegisterRd

L

>~ Forwarding \«—| yiepmwB RegisterRd

>\ unit -

Yy

(e)

b. With forwarding

Chapter 4 — The Processor — 20

Forwarding Conditions

EX hazard

if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

Chapter 4 — The Processor — 21

Double Data Hazard

Consider the seguence:

adc ,$1,9%2
adc , 51,93
add $1,51,%4

Both hazards occur
Want to use the most recent

Revise MEM hazard condition
Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 22

Revised Forwarding Condition

MEM hazard
If (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Chapter 4 — The Processor — 23

Datapath with Forwarding

<
A

ID/EX
”'WB EX/MEM
Control > M ~WB MEM/WB
IF/ID L EX = M > WB—
‘"
> U >
> X
s » > B
é Registers ALUL> | - 1
. 2 . u
Instruction| | |=| > ~(m X
memory - N u R Data
T | x " memory
o>
IF/ID.RegisterRs Rs ° >
IF/ID.RegisterRt | Rt
IF/ID.RegisterRt Rt =m EX/MEM.RegisterRd
T IF/ID.RegisterRd | [Rd g >
X
MEM/WB.RegisterRd
4
&
M(Chapter 4 — The Processor — 24

MORGAN KAUFMANN

Load-Use Data Hazard

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CCeo CcC7 CcCs8 CC9

Program
execution
order

(in instructions)

w $2, 20($1) IM Reg / ;\|66d to stallll
) ' or one cycle

and $4, $2, $5 IM

or §8, $2, $6 —Ee_g]:
add $9, $4, 52 oM —Ee_gi

r— — -1
slt $1, $6, $7 M — Reg _> DM Reg!

Chapter 4 — The Processor — 25

Load-Use Hazard Detection

Check when using instruction is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

Chapter 4 — The Processor — 26

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CCH1 CcC2 CC3 CC4 CC5 CCeé6 CC7 cCs CC9 CC 10

Program
execution
order

(in instructions)

lw $2, 20($1) IM

Stall inserted
here

\

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF " m -‘::Re

add $9, $4, $2

DM Reg
— 1

Or, more i
accurately...

Chapter 4 — The Processor — 28

How to Stall the Pipeline

Force control values in ID/EX register
to0

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for 1w
Can subsequently forward to EX stage

Chapter 4 — The Processor — 29

Datapath with Hazard Detection
m: ID/EX.MemRead

— unit)
_g Jy
% ID/EX
= w8 EX/MEM
. »(Control M = WB LTEM/WB
S . R |
% |F“|D EX M WB
o
)
> > > M
> U >
S > X
= Registers N ‘ .
Y = P > -~ =M
_ 7 N ALU u
pC Instruction] = "M
memory - Data X
> u * memory
. X
IF/ID.RegisterRs - >
IF/ID.RegisterRt .
IF/ID.RegisterRt _ Rt M
IF/ID.RegisterRd g Rd. g g g
ID/EX.RegisterRt J
Rs Forwarding
Rt - unit)=

MORGAN KAUFMANN

; M(Chapter 4 — The Processor — 30

Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compliler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

Chapter 4 — The Processor — 31

Concluding Remarks

Data hazards exist when an instruction depends
on result of previous instruction or the one
before.

Data hazards can be solved using forwarding or
forwarding combined with stall.

Forwarding Is implemented using forwarding

unit for two situations:

EX hazard: forward result from EX stage in previous cycle to EX
stage (pipeline registers needed: EX/MEM and ID/EX)

MEM hazard: forward result from MEM stage in previous cycle to
EX stage (pipeline registers needed: MEM/WB and ID/EX)

Stall Is implemented using hazard detection
N ranit.

Chapter 4 — The Processor — 32

Problems to Solve

4.9 (note that "With ALU-ALU Forwarding
Only” means EX hazard only)

4.12,4.13

Chapter 4 — The Processor — 33

