\YZANY/ZANY/ANY/ANY/ANY/ANY/AN

A AV A AV ALY/
NWAVAVAVATATAA
A AV A AV ALY/

NWAAVAATATZATA

JANVIANVIANVIANVIANVYIA\VIA\VS

WHY

It’s one of the most interesting courses 1n the
faculty.

Give you 1nsight on how the hardware you’re using
works.

Ties Logic Design with Assembly, Compiler, and
OS, and Is at the core of all these sciences.

It’s also about programming, the best programmer
IS one who knows the hardware the best.

WHAT TO LEARN

Know how your computer works
Know how assemblers work
_earn how to design a processor
_earn about testing your work

BY THE TIME YOU COMPLETE THIS
COURSE YOU WILL BEABLE TO
ANSWER THE FOLLOWING QUESTIONS

high-level language = the language of the hardware,
how does the hardware execute the resulting program?

understanding the aspects of both the hardware and
software that affect program performance.

The software/ hardware interface, and how does software
Instruct the hardware to perform needed functions?

What determines the performance of a program, and how
can a programmer improve the performance?

What technigues can be used by hardware designers to
Improve performance?

TEXTBOOK

“Computer Organization and Design” 51 Edition
by David A. Patterson and John L. Hennesy

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=David+Harris&text=David+Harris&sort=relevancerank&search-alias=books

CHAPTERS

Chapters 1 : Computer Abstraction and technology
(1 lecture)

Chapter 2: Instructions: Language of the computer
(2~3 Lectures)

Chapter 4: The processor (4~5 Lectures)

Chapter 5: Exploiting memory hierarchy (1~2
Lectures)

ASSESSMENT / GRADING

ltem Percentage
Quizzes/Assignments 5 Marks
Practical Hands-on 10 Marks
Midterm 15 Marks
Practical Exam 20 Marks
Final Exam 50 Marks

LOGISTICS

Attendance In lectures & labs is mandatory
(your attendance week)

Studying the videos is mandatory (your
home week)

Late assignments/ Hands-on are not allowed
Cheating In anyway Is taken seriously

Excuses for absence in exams should be
officially approved in advance

COMMUNICATION

Lectures, labs and class announcements will be
published on LMS.

Contact e-mall: randa_aboelfatoh@cis.asu.edu.eq

mailto:randa_aboelfatoh@cis.asu.edu.eg

Let’s Start

M< COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 1

Computer Abstractions
and Technology

Dr. Heba Khaled
Edited by: Dr. Randa Mohamed

5th

Edition

Chapter 1

Introduction to Computer Architecture
(1.1,1.2)

Below Your Program (Interface between SW
and HW) (1.3,1.4)

Computer Performance (1.6)

Other sections are for your own knowledge and
not included In exam.

Chapter 1 — Computer Abstractions and Technology — 12

Edition

M COMPUTER ORGANIZATION AND DESIGN 5t

The Hardware/Software Interface

MORGAN EAUFHANN

Introduction

The Computer Revolution

Progress in computer technology
Underpinned by Moore’s Law

Makes novel applications feasible
Computers in automobiles
Cell phones
Human genome project
World Wide Web
Search Engines

Computers are pervasive

Chapter 1 — Computer Abstractions and Technology — 14

Classes of Computers

Personal computers
General purpose, variety of software
Subject to cost/performance tradeoff

Server computers
Network based
High capacity, performance, reliability
Range from small servers to building sized

Chapter 1 — Computer Abstractions and Technology — 15

Classes of Computers

Supercomputers
High-end scientific and engineering calculations

Highest capability but represent a small fraction of
the overall computer market

Embedded computers
Hidden as components of systems
Stringent power/performance/cost constraints

Chapter 1 — Computer Abstractions and Technology — 16

The PostPC Era

Personal Mobile Device (PMD)
Battery operated
Connects to the Internet
Hundreds of dollars
Smart phones, tablets, electronic glasses
Cloud computing
Warehouse Scale Computers (WSC)
Software as a Service (SaaS)

Portion of software run on a PMD and a portion
run in the Cloud

Amazon and Google

VIS Chapter 1 — Computer Abstractions and Technology — 17

The PostPC Era

1400

1200 /\/__\ Cell phone (not

1000 including smart phone)
2 800
o
= Smart phone sales
= 600

e PC (not including
tablet)
0

2007 2008 2009 2010 2011 2012

2007 2008 2009 2010 2011 2012

FIGURE 1.2 The number manufactured per year of tablets and smart phones, which
reflect the PostPC era, versus personal computers and traditlonal cell phones. Smart phones
represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest
growing category, nearly doubling between 2011 and 2012, Recent PCs and traditional cell phone categories
are relatively flat or declining,

w

Eight Great Ideas

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories

Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 19

M COMPUTER ORGANIZATION AND DESIGN 5t

The Hardware/Software Interface Edition

MORGAN EAUFHANN

Below Your Program

Below Your Program

Application software
Written in high-level language

System software

Compiler: translates HLL code to
machine code

Operating System: service code
Handling input/output
Managing memory and storage
Scheduling tasks & sharing resources

Hardware
Processor, memory, I/O controllers

Chapter 1 — Computer Abstractions and Technology — 21

Below Your Program

High'level Ianguage High-level swap(int v[], int k)

language {int temp;
program temp = v[k];

Level of abstraction closer to (inC) VK] = vEkH s

vlk+1l] = temp;

problem domain |

Provides for productivity and Coompier)
portability

Assembly language

program ?dd iz, $4,22

- for MIPS W 15, 0(%2)

Textual representation of o PTG
instructions 315 a0

Hardware representation
Binary digits (bits)
EnCOded inStrUCtionS and data Binary machine 00000000101000010000000000011000

language 00000000000110000001100000100001
program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Chapter 1 — Computer Abstractions and Technology — 22

Instruction set Architecture

Is the programmer’s view of a
computer.

It Is defined by the instruction set
(language) and operand locations
(registers and memory).

Many different architectures exist,
such as x86, MIPS, SPARC, ARM,
and PowerPC.

Can be implemented by different
companies (ARM architecture IS
mplemented by TI, NXP, Freescale)

Chapter 1 — Computer Abstractic

MORGAN KAUFMANN

Application |>"hello
Software [world!”

Operating

&/

Systems

architecture

Logic

Digital
Circuits

Analog
Circuits

Devices

Physics

8| &5 || @k

Instruction set Architecture

. Application >"hell?
Is the programmer’s view of a Software | wor1a!
Operating
CompUter' Application binary interface Systems g

It is defined by the instruction set [-

(language) and operand locations
(reg|SterS and memory) architecture

Many different architectures exist, Logic
such as x86, MIPS, SPARC, ARM, Digtal
and PowerPC.

Can be implemented by different
companies (ARM architecture IS S
implemented by TI, NXP, Freescale)| pnysics

Chapter 1 — Computer Abstractic

Analog
Circuits

8| &5 || @k

MORGAN KAUFMANN

Components of a Computer (Architecture

Compiler

Interface m

_v___/

Computer

o
Datapath

Evaluating % , :
performance S
4 3 N L 5.

Processor

Chapter 1 — Computer Abstractions and Technology — 25

Components of a Computer (Architecture)

Compiler

Interface m

v._./

» User-interface devices
_* Storage devices
. Network Adaptors

Computer

Datapath

S G I

Evaluating
performance

Processor

Chapter 1 — Computer Abstractions and Technology — 26

Processor (CPU)

Datapath: performs operations on data

Control: sequences datapath, memory, 1/O
devices.

Chapter 1 — Computer Abstractions and Technology — 27

Memory

Main memory/primary memory: Memory used to
hold programs while they are running. Typically
consists of DRAM.

Secondary memory Nonvolatile: Memory used to
store programs and data between runs; typically
consists of flash memory in PMDs and magnetic disks
In servers.

Cache memory: Consists of a small, fast memory
that acts as a buffer for the DRAM memory. Cache Is
built using a different memory technology, static
random access memory (SRAM). SRAM is faster but
Jless dense, and hence more expensive, than DRAM.

\ Chapter 1 — Computer Abstractions and Technology — 28

Opening the Box (Apple iPad?2)

/ Capacitive multitouch LCD screen
/ 3.8 V, 25 Watt-hour battery

Computer board

Chapter 1 — Computer Abstractions and Technology — 29

Inside the Processor

Apple A5

Processor
Data Path
2

Processor
Data Path
1

.. Arm Core.

MORGAN KAUFMANN

Processor
Data Path
2

Processor
Data Path
1

Digital
Logic

Blocks

Arm Core

Chapter 1 — Computer Abstractions and Technology — 30

M COMPUTER ORGANIZATION AND DESIGN 5t

The Hardware/Software Interface Edition

MORGAN EAUFHANN

Performance

<
A

Defining Performance

Which airplane has the

best performance?

[[[[[
Boeing 777 | Boeing 777 |
Boeing 747 Boeing 747
BAC/Sud | BAC/Sud | |
Concorde Concorde |
Douglas Douglas DC- |
DC-8-50 8-50 T T T T
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
O Passenger Capacity O Cruising Range (miles) |
[[
Boeing 777 Boeing 777 | | |
Boeing 747 Boeing 747 |
BAC/Sud | BAC/Sud | |
Concorde Concorde
Douglas Douglas DC-
DC-8-50 :'5 ss0 R
0 500 1000 1500 0 100000 200000 300000 400000
| O Cruising Speed (mph) | | O Passengers x mph |

'MORGAN KAUFMANN

Chapter 1 — Computer Abstractions and Technology — 32

Understanding Performance

Algorithm
Determines number of operations executed

Programming language, compiler, architecture

Determine number of machine instructions executed per
operation

Processor and memory system
Determine how fast instructions are executed

1/O system (including OS)
Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 33

Response Time and Throughput

Response time
How long it takes to do a task

Throughput
Total work done per unit time

e.g., tasks/transactions/... per hour

How are response time and throughput affected by
Replacing the processor with a faster version?
Adding more processors?

We’ll focus on response time for now...

Chapter 1 — Computer Abstractions and Technology — 34

Relative Performance

Define Performance = 1/Execution Time

To compare the performance of two machines
(or CPUs) “A”, “B” running a given specific
program (A Is n times faster than B)

Performance, = 1 / Execution Time,
Performance; = 1 / Execution Timeg

Performance " Execution TimeB
Speedup =n = = _ _
PerformanceB Execution Time A

Chapter 1 — Computer Abstractions and Technology — 35

Relative Performance

Example: For a given program:
Execution time on machine A: Execution,= 10 second
Execution time on machine B: Executiong= 15 seconds

Speedup= PerformanceA/ PerformanceB=
Execution Timeg /Execution Time,=15/10=1.5

The performance of machine A 1s 1.5 times the
performance of machine B when running this
program, or Machine A is said to be 1.5 times
faster than machine B when running this
program

\ Chapter 1 — Computer Abstractions and Technology — 36

Measuring Execution Time

Elapsed time

Total response time, including all aspects
Processing, 1/0, OS overhead, idle time

Determines system performance

CPU time
Time spent processing a given job
Discounts I/O time, other jobs’ shares
Comprises user CPU time and system CPU time

Different programs are affected differently by CPU
and system performance

Chapter 1 — Computer Abstractions and Technology — 37

Execution Time (Elapsed Time)

e B

I/0 Time CPU Time Disk and Memory time

/N

User CPU Time System CPU Time

CPU Clocking

Operation of digital hardware governed by a constant-

rate clock
«—Clock period—»
Clock (cycles) B
Data transfer
and computation < >< >< >
Update state <:> <:> <:>

[
»

* Clock cycle time/period (T): Clock period: duration of a clock cycle
— time for a complete clock cycle

_ time between ticks e.g., 250ps = 0.25ns = 250x10-*?s
— seconds per cycle Clock frequency (rate): cycles per
® Clock rate/frequency (R): second

— the inverse of the clock period, i.e., e.g., 4.0GHz = 4000MHz =
— cycles per second T ’ 9
Ao 4.0x10°Hz

Chapter 1 — Computer Abstractions and Technology — 39

CPU Time

CPUTime =CPUClock CyclesxClock Cycle Time

~ CPUClockCycles
ClockRate

Performance improved by
Reducing number of clock cycles
Increasing clock rate

Chapter 1 — Computer Abstractions and Technology — 40

Our favorite program runs in 10 seconds on computer A, which
has a 2 GHz clock. We are trying to help a computer designer
build a computer, B, which will run this program in 6 seconds.
Thee designer has determined that a substantial increase in the
clock rate Is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many
clock cycles as computer A for this program. What clock rate
should we tell the designer to target?

To run the program in 6 seconds, B must have twice the clock
rate of A.

Chapter 1 — Computer Abstractions and Technology — 41

CPU Time Example

Computer A: 2GHz clock, 10s CPU time

Designing Computer B
Aim for 6s CPU time
Can do faster clock, but causes 1.2 x clock cycles

How fast must Computer B clock be?

_ ClockCycles, 1.2xClockCycles,
CPUTime, 6s

Clock Cycles, =CPU Time, xClockRate

ClockRate,

=10sx2GHz =20x10°

1.2x20x10° B 24%10°
6S 6S

ClockRate, = =4GHz

Chapter 1 — Computer Abstractions and Technology — 42

Instruction Count and CPI

ClockCycles=Instructicn Countx Cyclesperinstructian
CPUTime=Instructicn Countx CPIxClockCycleTime

B Instructicn Countx CPI
ClockRate

Instruction Count for a program
Determined by program, ISA and compiler

Average cycles per instruction
Determined by CPU hardware

If different instructions have different CPI
Average CPI affected by instruction mix

Chapter 1 — Computer Abstractions and Technology — 43

Static and Dynamic Instruction Count

Static instruction count is the number of instructions the program
has

Dynamic instruction count is the actual number of instructions
executed by the CPU for a specific program execution

We usually use dynamic instruction count as if, for example, you
have a loop in your program then some instructions get executed
more than once

Also, in the presence of branches, some instructions may not be
executed at all

Chapter 1 — Computer Abstractions and Technology — 44

Suppose we have two implementations of the
same Instruction set architecture.

Computer A has a clock cycle time of 250 ps
and a CPI of 2.0 for some program, and
computer B has a clock cycle time of 500 ps
and a CPI of 1.2 for the same program.

Which computer is faster for this program and
by how much?

Chapter 1 — Computer Abstractions and Technology — 45

CPI Example

Computer A: Cycle Time = 250ps, CPI1 = 2.0
Computer B: Cycle Time =500ps, CPl =1.2
Which is faster, and by how much?

CPUTIm ey = Instructian Count><CP|A xCycle Tim en

=1x2.0x250ps=1x500ps«———| Ais faster...

CPUTimeB =Instructian Count><CP|B ><CycIeTimeB
=1x1.2x500ps=1x600ps

CPUTimeB _ 1x600ps

: = =1.2 «
CPUTiIme |x500ps

...by this much

A

Chapter 1 — Computer Abstractions and Technology — 46

CPIl in More Detall

Different instructions take different amounts of time depending on
what they do:

Multiplication takes more time than addition
Floating-point operations take longer than integer ones
Accessing memory takes more time than accessing registers

Instructions can be divided into classes of similar instructions

Instructions in the same class have the same Clock cycles Per
Instruction (CPI) value

Chapter 1 — Computer Abstractions and Technology — 47

CPI Iin More Detalil (cont.)

Total CPU clock cycles for a certain program can be calculated
by looking at various instruction classes and their individual
CPlIs

If different instruction classes take different numbers of cycles

Clock Cycles = > (CPI, xInstruction Count,)
i=1

— CPliis the clock cycles per instruction for class I (integer number),
— CI1is the count of instructions executed from class 1, and
—n 1S the number of instruction classes

Chapter 1 — Computer Abstractions and Technology — 48

CPIl in More Detall

® Average CPI (CPIaverage Or just CPI) for a certain program is the
average number of clock cycles each instruction takes to execute

CPJ - CPU clock cycles for a program CPU clock cycles for a program
{ Instruction count C
thus, CPU clock cyeles for a program =CPI x C = Z; (CPI. xC,)

(CPI, xC,)
C

) C
=" (CPI, x)

N Relative frequency

then, cpr = 2

« Cis the number of instructions executed by the program (known as the
instruction count, instruction path length, or dynamic program size)

® |et the fraction of occurrence (relative frequency) of an instruction class
in @ program be C. . 1
= ? then, CPI = ZH(CPI X C fion)

« Thus, CPI depends on the instruction mix (the dynamic
frequency of instructions across the program)
Chapter 1 — Computer Abstractions and Technology — 49

CPI Example

Alternative compiled code sequences using
Instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

Sequence 1: IC =5 Sequence 2: IC =6

Clock Cycles Clock Cycles
=2%x1 + 1x2 + 2%x3 =4x] + 1x2 + 1x3
=10 =9
Avg. CPI =10/5=2.0 Avg. CPI=9/6=1.5

Chapter 1 — Computer Abstractions and Technology — 50

Instructions Per Clock Cycle

CPI provides one way of comparing two different
Implementations of the same ISA, since the number of
Instructions executed for a program will be the same

Although we might expect that the minimum CPI is 1.0, some
processors fetch and execute multiple instructions per clock
cycle (e.g., multicore microprocessors as will be shown later)

We could invert CPI to talk about IPC, or instructions per
clock cycle

Chapter 1 — Computer Abstractions and Technology — 51

The CPU Performance Equation

® The CPU time for a program can be expressed in two ways:

CPU execution time CPU clock cycles _
= X Clock cycle time
for a program for a program

or

CPU execution time CPU clock cycles 1
= X

for a program - for a program Clock rate
® As CPU clock cycles for a program = CPI x C = Z;(CPII. xC.)

® Then, we could express the CPU performance equation as follows:

CPU time = CPIxCxT = (3" (CPIL x C))xT
or

CPU time = CPIXCX% = (> (CPI x Cf))x%

Chapter 1 — Computer Abstractions and Technology — 52

Performance Summary

CPUTime — Instructions . Clockcycles Seconds

X
Program Instruction Clockcycle

® CPU performance is dependent upon three factors:

Dependency

1D1dwo)
10SS320.d

uonejuawduwi
ABojouyda|

'Y buiwwesboid

Average cl}ock cycles per instruction (CPI) | V Vv oV vV
Instruction count (C) vV v |V
Clock cycle time (clock rate) (T or R) 4 vV vV

® CPU time is equally dependent on these three factors: a 10%
improvement in any one of them leads to 10% gain in CPU time

Problems to Solve

1.5,1.6,1.7
Note that E9 for example means 109,

Chapter 1 — Computer Abstractions and Technology — 69

Thank you

Chapter 1 — Computer Abstractions and Technology — 70

