
www.huawei.com

Copyright 2018 © Huawei Technologies Co., Ltd

Python Programming Basics

Copyright Huawei Technologies Co., Ltd Page 2

Contents

1. Introduction to Python

2. Lists and Tuples

3. Strings

4. Dictionaries

5. Conditional and Looping Statements

6. Functions

7. Object-Oriented Programming

8. Date and Time

9. Regular Expressions

10. File Manipulation

Copyright Huawei Technologies Co., Ltd Page 3

Getting the Current Date and Time

◆ Let’s see how to get the current date and time.

◆ Note that datetime is a module, and it also contains a datetime class. Only

the class imported by from datetime import datetime is the datetime class.

If you import only the import datetime, you need to refer to the full name

datetime.datetime.

DateTime.Now () returns the current date and time, with the type datetime.

>>> from datetime import datetime

>>> now = datetime.now() # Get the current datetime

>>> print(now)

2015-05-18 16:28:07.198690

>>> print(type(now))

<class ‘datetime.datetime’>

Copyright Huawei Technologies Co., Ltd Page 4

Getting Formatted Time and Date

Format Time

Format Date
Output:
2016-04-07 10:25:09
Thu Apr 07 10:25:09 2016

())

Copyright Huawei Technologies Co., Ltd Page 5

◆ In a computer, time is represented by numbers.

◆ We refer to the January 1, 1970 00:00:00 utc+00:00 time zone as epoch time, which is recorded as 0 (a negative

timestamp for before 1970), and the current time is the number of seconds relative to epoch time, called timestamp.

You can take that timestamp = 0 = 1970-1-1 00:00:00 utc+0:00. The corresponding Beijing time is: timestamp = 0 =

1970-1-1 08:00:00 utc+8:00. The value of the visible timestamp has nothing to do with the time zone, because once

the timestamp is determined, the UTC time is determined, and time in any timezone after conversion is determined.

That is why the current time that the computer stores is represented by timestamp. Because timestamps of the

computers around the world are the same at any given time, only the timestamp () method needs to be called to

convert a datetime type to timestamp.

◆ Note that Python's timestamp is a floating-point number. If there are decimal places, the decimal places represent the

number of milliseconds.

◆ The timestamp of some programming languages, such as Java and JavaScript, uses integers to represent the

number of milliseconds, in which case a floating-point representation of Python can only be achieved by dividing the

timestamp by 1000.

>>> from datetime import datetime

>>> dt = datetime(2015,4,19,12,20) #Create using specified datetime

>>> dt.timestamp() #Convert datetime into timestamp

1429417200.0

Converting datetime to timestamp

Copyright Huawei Technologies Co., Ltd Page 6

◆ To convert timestamp to datetime, use the fromtimestamp () method provided by datetime:

◆ Note that timestamp is a floating-point number, and it does not have the concept of a time zone,

but datetime has a time zone. Local time refers to the time zone set by the current operating

system. For example, the Beijing time zone is East 8, then local time: 2015-04-19 12:20:00. That

is, the time of the utc+8:00 time zone: 2015-04-19 12:20:00 utc+8:00. At the moment Greenwich

Standard Time and Beijing time offset by 8 hours. That is, time in utc+0:00 time zone should be:

2015-04-19 04:20:00 utc+0:00. Timestamp can also be converted directly to time in the UTC

standard time zone:

>>> from datetime import datetime

>>> t = 1429417200.0

>>> print(datetime.fromtimestamp(t))

2015-04-19 12:20:00

>>> from datetime import datetime

>>> t = 1429417200.0

>>> print(datetime.fromtimestamp(t)) # local time

2015-04-19 12:20:00

>>> print(datetime.utcfromtimestamp(t)) # UTC time

2015-04-19 04:20:00

Converting timestamp to datetime

Copyright Huawei Technologies Co., Ltd Page 7

Get Calendar of a Month

 The calendar module can

process yearly calendars and

monthly calendars using

multiple methods, for example,

printing a monthly calendar.

Copyright Huawei Technologies Co., Ltd Page 8

Contents

1. Introduction to Python

2. Lists and Tuples

3. Strings

4. Dictionaries

5. Conditional and Looping Statements

6. Functions

7. Object-Oriented Programming

8. Date and Time

9. Regular Expressions

10. File Manipulation

Copyright Huawei Technologies Co., Ltd Page 9

Regular Expressions (1)

◆ A regular expression is a string of characters and special symbols that describe a

pattern's repetition or multiple characters, and therefore a regular expression can

match a series of strings with similar characteristics in a pattern.

◆ Regular expressions provide the basis for advanced text pattern matching,

extraction, and/or text-style search and replace functions.

◆ Python supports regular expressions by using the re modules in the standard library.

Copyright Huawei Technologies Co., Ltd Page 10

Matching Process for Regular Expressions

◆ The approximate matching process for regular expressions is to match characters

between regular expressions and texts. If each character matches, the match

succeeds, and the match fails if there is any character match failure.

Regular expression engine

Regular expression text

Regular expression objects

Matching result

Text to be matched Match

Compile

Objects obtained after the regular

expression engine compiles

expression strings, including

information on how to match

Results obtained after the regular

expression objects match texts,

including the successful match

information, like matched strings,

groups and indexes in the text

Copyright Huawei Technologies Co., Ltd Page 11

◆ Python provides support for regular expressions by using the re module.

◆ The general step in using re is to compile the string form of a regular expression

into a pattern instance, and then use the patterns instance to process the text and

get the matching result (a match instance), and finally use the match instance to

get the information and do other things.

import re

Compile a regular expression into a patten object

pattern = re.compile(r'hello')

Match text with pattern and return none if no match

match = pattern.match('hello world!')

if match:

Get group information using match

print(match.group())

Output

hello

re Modules

Copyright Huawei Technologies Co., Ltd Page 12

re Module Functions and Regular

Expression Object Methods

Function/Method Description Example res.group()/res

compile(pattern,flag=0)

Compiles a regular expression

pattern using any optional flag and

returns regular expression objects.

res = re.compile(".*")

print res.search("abcd").group() abcd

match(pattern,string,flag=0) Matches from the start of string. res = re.match(".*","abcdxxxx")

abcd

search(pattern,string,flag=0) Matches from any position of string. res =

re.search(".*",“xxxabcdxx") abcd

findall(pattern,string,flag=0) Finds all regular expression patterns

in strings and returns a list.

res = re.findall("a", "abdadafaf") ['a','a','a','a']

finditer(pattern,string,flag=0) Finds all regular expression patterns

in strings and returns an iterator.

res = re.finditer("a", "abdadafaf")

print res.next().group() a

split(pattern,string,max=0) Splits a string into a list by regular

expression pattern.

re.split(",","li,yang,zhao") ['li','yang','zhao']

sub(pattern,repl,string,count=0) Counts the positions with repl

regular expressions in strings.

res = re.sub(",","-","l,y,z") l-y-z

Copyright Huawei Technologies Co., Ltd Page 13

compile

◆ This method is the factory method of the pattern class, which is used to compile a regular

expression in a string as a patterns object.

Copyright Huawei Technologies Co., Ltd Page 14

Special Symbols and Characters -

Symbols (1)

Symbol Description Matched Expression res.group()

literal Matches literal values of text

strings.

res=re.search(“foo”,”xxxfooxxx”) foo

re1|re 2 Matches regular expressions

re1 or re2.

res=re.search(“foo|bar”,”xxxfooxxx”) foo

. Matches any character

(except \n).

res=re.search(“b.b”,”xxxbobxxx”) bob

^ Matches string start. res=re.search("^b.b", "bobx xx") bob

$ Matches string end. res=re.search("b.b$","xx xbob") bob

* Matches regular expressions

that appear none or many

times (from string start).

res= re.search("bob*","bobbo")

res1= re.search(".*","bobboddd")

Bobb

bobboddd

+ Matches regular expressions

that appear once or many

times.

res= re.search("bob+","xxxxbobbbbob") bobbbb

Copyright Huawei Technologies Co., Ltd Page 15

Special Symbols and Characters -

Symbols (2)

Symbol Description Matched Expression res.group()

? Matches regular

expressions that do not

appear or appear once.

res=re.search("bob?","bobbod") bob

{N} Matches regular

expressions that appear N

times.

res=re.search("bob{2}","bobbbbod") bobb

{M,N} Matches regular

expressions that appear

M to N times.

res=re.search("bob{2,3}","bobbbbod") bobbb

Copyright Huawei Technologies Co., Ltd Page 16

Special Symbols and Characters -

Characters

Character Description Matched Expression res.group()

\d Any decimal number (\D does

not match any decimal number).

res=re.search("xx\dxx","oxx4xxo") xx4xx

\w Matches any letter or number (\W

means no match).

res=re.search("xx\w\wxx","oxxa4xxo") xxa4xx

\s Matches any space character (\S

means no match).

res=re.search("xx\sxx","oxx xxo") xx xx

\b Matches any letter boundary (\B

means reverse).

res=re.search(r"\bthe","xxx the xxx") the

\N Matches saved sub-group.

\c Matches any special character c

one by one.

res=re.search("*","x*x") *

\A(\Z) Matches string start (or end). res=re.search("\ADear","Dear Mr.Li") Dear

Copyright Huawei Technologies Co., Ltd Page 17

re.match function

re.match tries to match a mode from the string start position. If

no mode is matched from the string start, match() returns none.

Copyright Huawei Technologies Co., Ltd Page 18

re.search method

re.search scans the entire string and returns the first successful

match.

Copyright Huawei Technologies Co., Ltd Page 19

Index and replace

The re module of Python provides re.sub to replace matched items in

strings.

Copyright Huawei Technologies Co., Ltd Page 20

re.compile function

The compile function compiles regular expressions and creates a regular

expression (pattern) object, which will be used by the match() and search()

functions.

Copyright Huawei Technologies Co., Ltd Page 21

re.compile function (Cont.)

Copyright Huawei Technologies Co., Ltd Page 22

re.finditer

re.finditer finds all strings that match regular expressions, and returns

them as an iterator.

Copyright Huawei Technologies Co., Ltd Page 23

re.split

The split method splits matched strings and returns a list. For
example:

Copyright Huawei Technologies Co., Ltd Page 24

Contents

1. Introduction to Python

2. Lists and Tuples

3. Strings

4. Dictionaries

5. Conditional and Looping Statements

6. Functions

7. Object-Oriented Programming

8. Date and Time

9. Regular Expressions

10.File Manipulation

Copyright Huawei Technologies Co., Ltd Page 25

◆ File manipulation is of great importance to programming languages, and

information technologies will be meaningless if data cannot be persistently

read, saved, or used.

◆ Common types of file manipulation include opening and closing files,

reading and writing files, and backing up files.

Python File Manipulation

Copyright Huawei Technologies Co., Ltd Page 26

File Manipulation (1)

◆ Opening a file

➢ f.open(‘file name’,’access mode’)

➢ Common access modes:

Access

Mode

Description

r Opens a file only for reading.

w Opens a file only for writing.

a Opens a file only for addition.

rb Opens a file using the binary format only for reading.

wb Opens a file using the binary format only for writing.

ab Opens a file using the binary format only for addition.

r+ Opens a file for reading.

w+ Opens a file for writing.

a+ Opens a file for addition.

rb+ Opens a file using the binary format for reading.

wb+ Opens a file using the binary format for writing.

ab+ Opens a file using the binary format for addition.

Copyright Huawei Technologies Co., Ltd Page 27

File Manipulation (2)

◆ Writing data:

◆ Reading data:

◆ Closing a file:

f = open(“name.txt”,“w”)

f.write(“libai”)

f.close()

f = open(“name.txt”,“r”)

lines = f.realines()

for line in lines:

print(line)

f.close()

Copyright Huawei Technologies Co., Ltd Page 28

Renaming Files in a Batch

◆ Get the target folder:

➢ import os

➢ dirName = input(“enter specified folder:”)

◆ Get names of files in the target folder:

➢ fileNames = os.listdir(dirName)

➢ os.chdir(dirName)

◆ Rename

➢ for name in fileNames:

➢ os.rename(name,“zhangsan”+name)

Copyright Huawei Technologies Co., Ltd Page 29

Other File Manipulation Functions

◆ Writing and reading files:

➢ f.write("a") f.write (str) writes a string f.writeline (). f.readlines () is similar to the following read

class.

➢ f.read() reads all. f.read (size) reads characters of the size number from a file.

➢ f.readline() reads a line, and returns an empty string to the file end. f.readlines() reads all,

and returns a list. Each element of the list represents a row containing the " \n” \.

➢ f.tell() returns the current file read location.

➢ f.seek (off, where) locates the file read/write location. off represents an offset, a positive

number means offset to the file end, and a negative number means offset to the file start.

➢ where: 0 means counting from the beginning, 1 means counting from the current position,

and 2 means counting from the end.

➢ f.flush() flushes the cache.

Copyright Huawei Technologies Co., Ltd Page 30

Hands ON

 Get the Calendar month of your birth month in your birth year

 For the multiline string below:

a. match with the phone numbers

b. match with the website S= """
abcde12378
www.myweb.com

342-555-6666
444.908.6849
"""

http://www.myweb.com/

Copyright Huawei Technologies Co., Ltd Page 31

Copyright Huawei Technologies Co., Ltd Page 32

Quiz

1. Python is an object-oriented programming language. Which of the following are

Python objects? ()

A: function

B: module

C: number

D: string

2. Which of the following are not Python file object manipulations? ()

A: open

B: delete

C: read

D: write

MCQ

ALL

delete

Copyright Huawei Technologies Co., Ltd Page 33

Summary of the Chapter

◆ This course focuses on the Python language and its basic syntax, such as

the Python compilation environment and installation of digital expressions,

variables, statements, strings, access to user input, functions, modules and

other common operations.

Copyright Huawei Technologies Co., Ltd Page 34

More Information

◆ Official site:

➢ www.python.org

◆ References

➢ Learning Python

➢ Python Standard Library

➢ Programming Python

Python Standard Library

Copyright Huawei Technologies Co., Ltd Page 35

Recommended for Learning

◆ Huawei e-learning site:

➢ http://support.huawei.com/learning/Index!toTrainIndex

◆ Huawei knowledge base on the support website:

➢ http://support.huawei.com/enterprise/servicecenter?lang=zh

Copyright Huawei Technologies Co., Ltd Page 36

www.huawei.com

Thanks

